目标
我正在实现IntegerRing
,这是抽象代数中的结构。这种类型的戒指是加成下的一个Abelian小组(我已经实现了)。振铃配备了两个运算符+和*。
选择实现
因此,我决定将IntegerGroup
定义为具有GroupElement
且具有运算符的类。完整的工作代码如下:
整数组
#ifndef DATAGROUP_H
#define DATAGROUP_H
#include "Array.h"
#include <iostream>
// This group is the integers mod n
// multiplication in integer group is simply integer addition modulo n
class IntegerGroup
{
public:
IntegerGroup();
IntegerGroup(int);
class GroupElement
{
int m;
IntegerGroup* group;
public:
GroupElement();
GroupElement(int, IntegerGroup*);
~GroupElement();
GroupElement operator*(const GroupElement&);
GroupElement operator*=(const GroupElement&);
bool operator==(const GroupElement&);
bool operator!=(const GroupElement&);
int val() const;
friend std::ostream& operator<<(std::ostream& o, const GroupElement& e)
{
return (o << e.m);
}
};
GroupElement identity() const;
int size() const;
friend std::ostream& operator<<(std::ostream& o, const IntegerGroup& g)
{
return (o << g.elements);
}
private:
int n;
//GroupElement * identity;
Array<GroupElement> elements;
void createNewElement(int);
};
#endif
IntegerGroup.cpp
#include "IntegerGroup.h"
#include <new>
#include <iostream>
IntegerGroup::IntegerGroup()
{
}
IntegerGroup::IntegerGroup(int n)
: n(n), elements(Array<IntegerGroup::GroupElement>(n))
{
//this is to have integers in [0,n-1]
for (int j = 0; j < n; j++)
{
this->createNewElement(j);
}
}
void IntegerGroup::createNewElement(int m)
{
// create new GroupElement
GroupElement newElement(m, this);
// store it at index m in elements
this->elements[m] = newElement;
}
IntegerGroup::GroupElement::GroupElement()
: group(0)
{
}
IntegerGroup::GroupElement::GroupElement(int m, IntegerGroup * g)
: group(g)
{
// this->m must be in [0, g->size() - 1]
this->m = m % g->size();
if (this->m < 0) this->m = g->size() + this->m;
}
IntegerGroup::GroupElement::~GroupElement()
{
if (this->group)
{
this->group = 0;
}
}
IntegerGroup::GroupElement IntegerGroup::identity() const
{
// IntegerGroup consists of all integers in [0, n-1], and identity is 0
return this->elements[0];
}
// this group is simply the integers mod n, and should be populated integers in [0,n-1]
// thus, multiplication is simply a matter of returning the element at index (a+b)%n
IntegerGroup::GroupElement IntegerGroup::GroupElement::operator*(const IntegerGroup::GroupElement& b)
{
// if the group is not defined
if (!this->group)
// we simply perform integer multiplication
return GroupElement(this->val() * b.val());
// otherwise, perform group multiplication
return GroupElement((this->val() + b.val()) % this->group->size());
}
IntegerGroup::GroupElement IntegerGroup::GroupElement::operator*=(const IntegerGroup::GroupElement& b)
{
return ((*this) = (*this) * b);
}
bool IntegerGroup::GroupElement::operator==(const IntegerGroup::GroupElement& b)
{
return this->m == b.m;
}
bool IntegerGroup::GroupElement::operator!=(const IntegerGroup::GroupElement& b)
{
return !(*this == b);
}
int IntegerGroup::GroupElement::val() const { return this->m; }
int IntegerGroup::size() const { return this->n; }
Array.cpp,Array.h只是模板包装器类。该代码也已经起作用。您可以在此处找到on的文件GitHub,也可以使用
std::vector
代替。 (现在我想到现在可以做到这一点。)问题
当我尝试创建
IntegerRing
并进行编译时,我遇到了许多奇怪的错误,其中大多数与使用私有(private)类数据的类自己的函数有关。到目前为止,这是我的
IntegerRing
的实现:整数环
#ifndef INTEGERRING_H
#define INTEGERRING_H
#include "IntegerGroup.h"
#include "Operators.h"
class IntegerRing : public IntegerGroup
{
public:
class Element : public IntegerGroup::GroupElement
{
public:
using IntegerGroup::GroupElement;
/*Element();
Element(int);
Element(int, IntegerRing*);
~Element();*/
operator IntegerGroup::GroupElement() { return IntegerGroup::GroupElement(); }
Element(const IntegerGroup::GroupElement& el)
{
// copy everything from el into *this
this->m = el.m;
this->group = el.group;
}
/*Element operator+(const Element&);
Element operator-(const Element&);
Element operator*(const Element&);
Element operator+=(const Element&);
Element operator-=(const Element&);
Element operator*=(const Element&);*/
};
Element identity(Operators);
private:
};
#endif
IntegerRing.cpp
#include "IntegerRing.h"
#include "IntegerGroup.h"
#include "Operators.h"
/*IntegerRing::Element::Element()
{
}*/
/*IntegerRing::Element(const IntegerGroup::GroupElement& el)
{
// copy everything from el into *this
this->m = el.m;
this->group = el.group;
}
/*
IntegerRing::Element IntegerRing::Element::operator+(const IntegerRing::Element& b)
{
// IntegerRing is simply Abelian group under addition
// thus, we treat the elements like group elements first, multiply under that group, and cast to ring elements
return (IntegerRing::Element)(((IntegerGroup::GroupElement)(*this)) * ((IntegerGroup::GroupElement)b));
}
IntegerRing::Element IntegerRing::Element::operator-(const IntegerRing::Element& b)
{
int val;
// if this has a group
if (this->group)
{
// compute (this->m - b.m) % this->group->size()
val = (this->m - b.m) % this->group->size();
// if that value is negative, add this->group->size() to it
if (val < 0) val = this->group->size() + val;
}
// otherwise, val is simply the integer difference of this->m,b.m
else val = this->m - b.m;
// return element with this value
return Element(val);
}
IntegerRing::Element IntegerRing::Element::operator*(const IntegerRing::Element& b)
{
if (this->group)
return IntegerRing::Element((this->m - b.m) % this->group->size());
return IntegerRing::Element(this->m - b.m);
}
IntegerRing::Element IntegerRing::Element::operator+=(const IntegerRing::Element& b)
{
return ((*this) = (*this) + b);
}
IntegerRing::Element IntegerRing::Element::operator-=(const IntegerRing::Element& b)
{
return ((*this) = (*this) - b);
}
IntegerRing::Element IntegerRing::Element::operator*=(const IntegerRing::Element& b)
{
return ((*this) = (*this) * b);
}
*/
IntegerRing::Element IntegerRing::identity(Operators op)
{
// if op is ADDITIVE
if (op == ADDITIVE)
// return what the base version of this method would return
return (IntegerRing::Element)(((IntegerGroup::GroupElement*)this)->identity());
// multiplicative identity requested, and it is 1
return (IntegerRing::Element)this->elements[0];
}
运算符
#ifndef OPERATORS_H
#define OPERATORS_H
enum Operators
{
ADDITIVE, MULTIPLICATIVE
};
#endif
编译器认为
IntegerRing::Element
的副本构造函数实际上是一个返回int
的函数。错误的屏幕截图
这是错误的屏幕截图:
如何解决所有这些问题?
最佳答案
原因是您无法访问类(class)的私有(private)字段。
继承/嵌套类不会对此进行更改。(异常是内部类始终可以访问其所在类的任何成员(自C++ 11起))
对于日志中的第一个错误using IntegerGroup::GroupElement;
应该是usingIntegerGroup::GroupElement::GroupElement;
内的IntegerRing::Element
,顺便说一句,我看不到需要此类。
关于c++ - 内部派生成员,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/39358793/