我正在寻找在Python中执行此操作的测试:

> survivors <- matrix(c(1781,1443,135,47), ncol=2)
> colnames(survivors) <- c('survived','died')
> rownames(survivors) <- c('no seat belt','seat belt')
> survivors
             survived died
no seat belt     1781  135
seat belt        1443   47
> prop.test(survivors)

    2-sample test for equality of proportions with continuity correction

data:  survivors
X-squared = 24.3328, df = 1, p-value = 8.105e-07
alternative hypothesis: two.sided
95 percent confidence interval:
 -0.05400606 -0.02382527
sample estimates:
   prop 1    prop 2
0.9295407 0.9684564

我对p-value计算最感兴趣。

该示例采用here的形式

最佳答案

我想我明白了:

In [11]: from scipy import stats

In [12]: import numpy as np

In [13]: survivors = np.array([[1781,135], [1443, 47]])

In [14]: stats.chi2_contingency(survivors)
Out[14]:
(24.332761232771361,       # x-squared
 8.1048817984512269e-07,   # p-value
 1,
 array([[ 1813.61832061,   102.38167939],
       [ 1410.38167939,    79.61832061]]))

关于python - Python比例测试类似于R中的prop.test,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/26615019/

10-09 03:47