我正在寻找在Python中执行此操作的测试:
> survivors <- matrix(c(1781,1443,135,47), ncol=2)
> colnames(survivors) <- c('survived','died')
> rownames(survivors) <- c('no seat belt','seat belt')
> survivors
survived died
no seat belt 1781 135
seat belt 1443 47
> prop.test(survivors)
2-sample test for equality of proportions with continuity correction
data: survivors
X-squared = 24.3328, df = 1, p-value = 8.105e-07
alternative hypothesis: two.sided
95 percent confidence interval:
-0.05400606 -0.02382527
sample estimates:
prop 1 prop 2
0.9295407 0.9684564
我对
p-value
计算最感兴趣。该示例采用here的形式
最佳答案
我想我明白了:
In [11]: from scipy import stats
In [12]: import numpy as np
In [13]: survivors = np.array([[1781,135], [1443, 47]])
In [14]: stats.chi2_contingency(survivors)
Out[14]:
(24.332761232771361, # x-squared
8.1048817984512269e-07, # p-value
1,
array([[ 1813.61832061, 102.38167939],
[ 1410.38167939, 79.61832061]]))
关于python - Python比例测试类似于R中的prop.test,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/26615019/