先来看一下在PairRDDFunctions.scala文件中reduceByKey和groupByKey的源码

/**
 * Merge the values for each key using an associative reduce function. This will also perform
 * the merging locally on each mapper before sending results to a reducer, similarly to a
 * "combiner" in MapReduce. Output will be hash-partitioned with the existing partitioner/
 * parallelism level.
 */
def reduceByKey(func: (V, V) => V): RDD[(K, V)] = {
  reduceByKey(defaultPartitioner(self), func)
}


/**
 * Group the values for each key in the RDD into a single sequence. Allows controlling the
 * partitioning of the resulting key-value pair RDD by passing a Partitioner.
 * The ordering of elements within each group is not guaranteed, and may even differ
 * each time the resulting RDD is evaluated.
 *
 * Note: This operation may be very expensive. If you are grouping in order to perform an
 * aggregation (such as a sum or average) over each key, using [[PairRDDFunctions.aggregateByKey]]
 * or [[PairRDDFunctions.reduceByKey]] will provide much better performance.
 *
 * Note: As currently implemented, groupByKey must be able to hold all the key-value pairs for any
 * key in memory. If a key has too many values, it can result in an [[OutOfMemoryError]].
 */
def groupByKey(partitioner: Partitioner): RDD[(K, Iterable[V])] = {
  // groupByKey shouldn't use map side combine because map side combine does not
  // reduce the amount of data shuffled and requires all map side data be inserted
  // into a hash table, leading to more objects in the old gen.
  val createCombiner = (v: V) => CompactBuffer(v)
  val mergeValue = (buf: CompactBuffer[V], v: V) => buf += v
  val mergeCombiners = (c1: CompactBuffer[V], c2: CompactBuffer[V]) => c1 ++= c2
  val bufs = combineByKey[CompactBuffer[V]](
    createCombiner, mergeValue, mergeCombiners, partitioner, mapSideCombine=false)
  bufs.asInstanceOf[RDD[(K, Iterable[V])]]
}

reduceByKey:reduceByKey会在结果发送至reducer之前会对每个mapper在本地进行merge,有点类似于在MapReduce中的combiner。这样做的好处在于,在map端进行一次reduce之后,数据量会大幅度减小,从而减小传输,保证reduce端能够更快的进行结果计算。

groupByKey:groupByKey会对每一个RDD中的value值进行聚合形成一个序列(Iterator),此操作发生在reduce端,所以势必会将所有的数据通过网络进行传输,造成不必要的浪费。同时如果数据量十分大,可能还会造成OutOfMemoryError。

通过以上对比可以发现在进行大量数据的reduce操作时候建议使用reduceByKey。不仅可以提高速度,还是可以防止使用groupByKey造成的内存溢出问题。

03-01 23:34