https://www.acwing.com/problem/content/369/
一定要小心缩点之后只剩下一个强连通分量(一个孤立点)的时候,本身就是强连通的了。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN = 1005;
const int INF = 0x3f3f3f3f;
int n, w[MAXN];
vector<int> G[MAXN], AG[MAXN];
//从i点出发的连通分量,染色为c1[i]
int c1[MAXN], cntc1;
//i点所在的强连通分量,染色为c2[i]
int c2[MAXN], cntc2;
//第i个强连通分量内的点
vector<int> C2[MAXN];
int s[MAXN], cnts;
void dfs1(int u) {
c1[u] = cntc1;
for (int v : G[u])
if (!c1[v])
dfs1(v);
s[++cnts] = u;
}
void dfs2(int u) {
C2[cntc2].push_back(u);
c2[u] = cntc2;
for (int v : AG[u])
if (!c2[v])
dfs2(v);
}
void Kosaraju() {
//再计算环
for (int i = 1; i <= n; ++i)
if (!c1[i]) {
++cntc1;
dfs1(i);
}
for (int i = n; i >= 1; --i)
if (!c2[s[i]]) {
++cntc2;
dfs2(s[i]);
}
}
set<int> AG2[MAXN], G2[MAXN];
int outdeg2[MAXN];
int indeg2[MAXN];
int main() {
#ifdef Yinku
freopen("Yinku.in", "r", stdin);
#endif // Yinku
scanf("%d", &n);
for(int i = 1; i <= n; ++i) {
while(true) {
int v;
scanf("%d", &v);
if(v == 0)
break;
G[i].push_back(v);
AG[v].push_back(i);
}
}
Kosaraju();
/*for(int i = 1; i <= n; ++i) {
printf("i=%d c2=%d\n", i, c2[i]);
}*/
for(int u = 1; u <= cntc2; ++u) {
for(auto ui : C2[u]) {
for(auto vi : G[ui]) {
if(c2[vi] != u && !G2[u].count(c2[vi])) {
++outdeg2[u];
++indeg2[c2[vi]];
G2[u].insert(c2[vi]);
AG2[c2[vi]].insert(u);
}
}
}
}
int cnt0out = 0, cnt0in = 0;
for(int i = 1; i <= cntc2; ++i) {
if(indeg2[i] == 0)
++cnt0in;
if(outdeg2[i] == 0)
++cnt0out;
}
int ans = max(cnt0in, cnt0out);
if(cntc2 == 1)
ans = 0;
printf("%d\n%d\n", cnt0in, ans);
return 0;
}