我已经使用TPL Dataflow了很多,但是却为我无法解决的问题绊绊:

我有以下架构:

BroadCastBlock<List<object1>>-> 2个不同的TransformBlock<List<Object1>, Tuple<int, List<Object1>>>->都链接到TransformManyBlock<Tuple<int, List<Object1>>, Object2>

我在链的末尾更改了TransformManyBlock中的lambda表达式:(a)对流元组执行操作的代码,(b)完全没有代码。

在TransformBlocks中,我测量从第一项到达开始到TransformBlock.Completion指示块已完成为止的时间(broadCastBlock链接到transportCompletion设置为true的fromfrom块)。

我无法调和的是为什么在(b)情况下transformBlocks完成的速度比(a)快5-6倍。这完全违背了整个TDF设计意图。转换块中的项目已传递到transfromManyBlock,因此,transformManyBlock对转换块完成时会产生影响的项目执行的操作完全无关紧要。我看不出有什么单一原因可以解释transfromManyBlock中发生的任何事情都可能与前面的TransformBlocks有关。

任何人都可以调和这个奇怪的发现吗?

这是一些代码来显示差异。运行代码时,请确保将以下两行更改为:

        tfb1.transformBlock.LinkTo(transformManyBlock);
        tfb2.transformBlock.LinkTo(transformManyBlock);


至:

        tfb1.transformBlock.LinkTo(transformManyBlockEmpty);
        tfb2.transformBlock.LinkTo(transformManyBlockEmpty);


为了观察前面的transformBlocks在运行时的差异。

class Program
{
    static void Main(string[] args)
    {
        Test test = new Test();
        test.Start();
    }
}

class Test
{
    private const int numberTransformBlocks = 2;
    private int currentGridPointer;
    private Dictionary<int, List<Tuple<int, List<Object1>>>> grid;

    private BroadcastBlock<List<Object1>> broadCastBlock;
    private TransformBlockClass tfb1;
    private TransformBlockClass tfb2;

    private TransformManyBlock<Tuple<int, List<Object1>>, Object2>
               transformManyBlock;
    private TransformManyBlock<Tuple<int, List<Object1>>, Object2>
               transformManyBlockEmpty;
    private ActionBlock<Object2> actionBlock;

    public Test()
    {
        grid = new Dictionary<int, List<Tuple<int, List<Object1>>>>();

        broadCastBlock = new BroadcastBlock<List<Object1>>(list => list);

        tfb1 = new TransformBlockClass();
        tfb2 = new TransformBlockClass();

        transformManyBlock = new TransformManyBlock<Tuple<int, List<Object1>>, Object2>
                (newTuple =>
            {
                for (int counter = 1; counter <= 10000000;  counter++)
                {
                    double result = Math.Sqrt(counter + 1.0);
                }

                return new Object2[0];

            });

        transformManyBlockEmpty
            = new TransformManyBlock<Tuple<int, List<Object1>>, Object2>(
                  tuple =>
            {
                return new Object2[0];
            });

        actionBlock = new ActionBlock<Object2>(list =>
            {
                int tester = 1;
                //flush transformManyBlock
            });

        //linking
        broadCastBlock.LinkTo(tfb1.transformBlock
                              , new DataflowLinkOptions
                                  { PropagateCompletion = true }
                              );
        broadCastBlock.LinkTo(tfb2.transformBlock
                              , new DataflowLinkOptions
                                  { PropagateCompletion = true }
                              );

        //link either to ->transformManyBlock or -> transformManyBlockEmpty
        tfb1.transformBlock.LinkTo(transformManyBlock);
        tfb2.transformBlock.LinkTo(transformManyBlock);

        transformManyBlock.LinkTo(actionBlock
                                  , new DataflowLinkOptions
                                       { PropagateCompletion = true }
                                  );
        transformManyBlockEmpty.LinkTo(actionBlock
                                       , new DataflowLinkOptions
                                            { PropagateCompletion = true }
                                       );

        //completion
        Task.WhenAll(tfb1.transformBlock.Completion
                     , tfb2.transformBlock.Completion)
                       .ContinueWith(_ =>
            {
                transformManyBlockEmpty.Complete();
                transformManyBlock.Complete();
            });

        transformManyBlock.Completion.ContinueWith(_ =>
            {
                Console.WriteLine("TransformManyBlock (with code) completed");
            });

        transformManyBlockEmpty.Completion.ContinueWith(_ =>
        {
            Console.WriteLine("TransformManyBlock (empty) completed");
        });

    }

    public void Start()
    {
        const int numberBlocks = 100;
        const int collectionSize = 300000;


        //send collection numberBlock-times
        for (int i = 0; i < numberBlocks; i++)
        {
            List<Object1> list = new List<Object1>();
            for (int j = 0; j < collectionSize; j++)
            {
                list.Add(new Object1(j));
            }

            broadCastBlock.Post(list);
        }

        //mark broadCastBlock complete
        broadCastBlock.Complete();

        Console.WriteLine("Core routine finished");
        Console.ReadLine();
    }
}

class TransformBlockClass
{
    private Stopwatch watch;
    private bool isStarted;
    private int currentIndex;

    public TransformBlock<List<Object1>, Tuple<int, List<Object1>>> transformBlock;

    public TransformBlockClass()
    {
        isStarted = false;
        watch = new Stopwatch();

        transformBlock = new TransformBlock<List<Object1>, Tuple<int, List<Object1>>>
           (list =>
        {
            if (!isStarted)
            {
                StartUp();
                isStarted = true;
            }

            return new Tuple<int, List<Object1>>(currentIndex++, list);
        });

        transformBlock.Completion.ContinueWith(_ =>
            {
                ShutDown();
            });
    }

    private void StartUp()
    {
        watch.Start();
    }

    private void ShutDown()
    {
        watch.Stop();

        Console.WriteLine("TransformBlock : Time elapsed in ms: "
                              + watch.ElapsedMilliseconds);
    }
}

class Object1
{
    public int val { get; private set; }

    public Object1(int val)
    {
        this.val = val;
    }
}

class Object2
{
    public int value { get; private set; }
    public List<Object1> collection { get; private set; }

    public Object2(int value, List<Object1> collection)
    {
        this.value = value;
        this.collection = collection;
    }
}


*编辑:我发布了另一个代码段,这次使用值类型的集合,但是我无法重现上面代码中观察到的问题。难道是传递引用类型并同时对其进行操作(即使在不同的数据流块中)也会阻塞并引起争用吗? *

class Program
{
    static void Main(string[] args)
    {
        Test test = new Test();
        test.Start();
    }
}

class Test
{
    private BroadcastBlock<List<int>> broadCastBlock;
    private TransformBlock<List<int>, List<int>> tfb11;
    private TransformBlock<List<int>, List<int>> tfb12;
    private TransformBlock<List<int>, List<int>> tfb21;
    private TransformBlock<List<int>, List<int>> tfb22;
    private TransformManyBlock<List<int>, List<int>> transformManyBlock1;
    private TransformManyBlock<List<int>, List<int>> transformManyBlock2;
    private ActionBlock<List<int>> actionBlock1;
    private ActionBlock<List<int>> actionBlock2;

    public Test()
    {
        broadCastBlock = new BroadcastBlock<List<int>>(item => item);

        tfb11 = new TransformBlock<List<int>, List<int>>(item =>
            {
                return item;
            });

        tfb12 = new TransformBlock<List<int>, List<int>>(item =>
            {
                return item;
            });

        tfb21 = new TransformBlock<List<int>, List<int>>(item =>
            {
                return item;
            });

        tfb22 = new TransformBlock<List<int>, List<int>>(item =>
            {
                return item;
            });

        transformManyBlock1 = new TransformManyBlock<List<int>, List<int>>(item =>
            {
                Thread.Sleep(100);
                //or you can replace the Thread.Sleep(100) with actual work,
                //no difference in results. This shows that the issue at hand is
                //unrelated to starvation of threads.

                return new List<int>[1] { item };
            });

        transformManyBlock2 = new TransformManyBlock<List<int>, List<int>>(item =>
            {
                return new List<int>[1] { item };
            });

        actionBlock1 = new ActionBlock<List<int>>(item =>
            {
                //flush transformManyBlock
            });

        actionBlock2 = new ActionBlock<List<int>>(item =>
        {
            //flush transformManyBlock
        });

        //linking
        broadCastBlock.LinkTo(tfb11, new DataflowLinkOptions
                                      { PropagateCompletion = true });
        broadCastBlock.LinkTo(tfb12, new DataflowLinkOptions
                                      { PropagateCompletion = true });
        broadCastBlock.LinkTo(tfb21, new DataflowLinkOptions
                                      { PropagateCompletion = true });
        broadCastBlock.LinkTo(tfb22, new DataflowLinkOptions
                                      { PropagateCompletion = true });

        tfb11.LinkTo(transformManyBlock1);
        tfb12.LinkTo(transformManyBlock1);
        tfb21.LinkTo(transformManyBlock2);
        tfb22.LinkTo(transformManyBlock2);

        transformManyBlock1.LinkTo(actionBlock1
                                   , new DataflowLinkOptions
                                     { PropagateCompletion = true }
                                   );
        transformManyBlock2.LinkTo(actionBlock2
                                   , new DataflowLinkOptions
                                     { PropagateCompletion = true }
                                   );

        //completion
        Task.WhenAll(tfb11.Completion, tfb12.Completion).ContinueWith(_ =>
            {
                Console.WriteLine("TransformBlocks 11 and 12 completed");
                transformManyBlock1.Complete();
            });

        Task.WhenAll(tfb21.Completion, tfb22.Completion).ContinueWith(_ =>
            {
                Console.WriteLine("TransformBlocks 21 and 22 completed");
                transformManyBlock2.Complete();
            });

        transformManyBlock1.Completion.ContinueWith(_ =>
            {
                Console.WriteLine
                    ("TransformManyBlock (from tfb11 and tfb12) finished");
            });

        transformManyBlock2.Completion.ContinueWith(_ =>
            {
                Console.WriteLine
                    ("TransformManyBlock (from tfb21 and tfb22) finished");
            });
    }

    public void Start()
    {
        const int numberBlocks = 100;
        const int collectionSize = 300000;

        //send collection numberBlock-times
        for (int i = 0; i < numberBlocks; i++)
        {
            List<int> list = new List<int>();
            for (int j = 0; j < collectionSize; j++)
            {
                list.Add(j);
            }

            broadCastBlock.Post(list);
        }

        //mark broadCastBlock complete
        broadCastBlock.Complete();

        Console.WriteLine("Core routine finished");
        Console.ReadLine();
    }
}

最佳答案

好的,最后尝试;-)

概要:

方案1中观察到的时间增量可以通过垃圾收集器的不同行为来完全解释。

当运行方案1链接transformManyBlocks时,运行时行为是在主线程上创建新项(列表)时触发垃圾回收,而在运行方案1并链接transformManyBlockEmptys时情况并非如此。

请注意,创建新的引用类型实例(Object1)会导致在GC堆中分配内存的调用,这又可能触发GC收集运行。创建了许多Object1实例(和列表)后,垃圾收集器还有很多工作要做,以扫描堆中(可能)无法访问的对象。

因此,可以通过以下任一方式将观察到的差异最小化:


将Object1从类转换为结构(从而确保实例的内存未在堆上分配)。
保留对生成列表的引用(从而减少垃圾收集器识别不可达对象所需的时间)。
生成所有项目,然后将其发布到网络。


(注意:我无法解释为什么垃圾收集器在方案1“ transformManyBlock”与方案1“ transformManyBlockEmpty”中的行为不同,但是通过ConcurrencyVisualizer收集的数据清楚地表明了区别。)

结果:

(测试是在Core i7 980X,6核,启用HT的情况下运行的):

我对方案2进行了如下修改:

// Start a stopwatch per tfb
int tfb11Cnt = 0;
Stopwatch sw11 = new Stopwatch();
tfb11 = new TransformBlock<List<int>, List<int>>(item =>
{
    if (Interlocked.CompareExchange(ref tfb11Cnt, 1, 0) == 0)
        sw11.Start();

    return item;
});

// [...]

// completion
Task.WhenAll(tfb11.Completion, tfb12.Completion).ContinueWith(_ =>
{

     Console.WriteLine("TransformBlocks 11 and 12 completed. SW11: {0}, SW12: {1}",
     sw11.ElapsedMilliseconds, sw12.ElapsedMilliseconds);
     transformManyBlock1.Complete();
});


结果:


场景1(如发布,即链接到transformManyBlock):
 TransformBlock:以毫秒为单位的经过时间:6826
 TransformBlock:以毫秒为单位的经过时间:6826
场景1(链接到transformManyBlockEmpty):
 TransformBlock:以毫秒为单位的经过时间:3140
 TransformBlock:以毫秒为单位的经过时间:3140
方案1(循环主体中的transformManyBlock,Thread.Sleep(200)):
 TransformBlock:以毫秒为单位的经过时间:4949
 TransformBlock:以毫秒为单位的经过时间:4950
方案2(已发布但已修改为报告时间):
 转换块21和22已完成。 SW21:619毫秒,SW22:669毫秒
 转换块11和12已完成。 SW11:669毫秒,SW12:667毫秒


接下来,我更改了场景1和2,以准备将输入数据发布到网络之前:

// Scenario 1
//send collection numberBlock-times
var input = new List<List<Object1>>(numberBlocks);
for (int i = 0; i < numberBlocks; i++)
{
    var list = new List<Object1>(collectionSize);
    for (int j = 0; j < collectionSize; j++)
    {
        list.Add(new Object1(j));
    }
    input.Add(list);
}

foreach (var inp in input)
{
    broadCastBlock.Post(inp);
    Thread.Sleep(10);
}

// Scenario 2
//send collection numberBlock-times
var input = new List<List<int>>(numberBlocks);
for (int i = 0; i < numberBlocks; i++)
{
    List<int> list = new List<int>(collectionSize);
    for (int j = 0; j < collectionSize; j++)
    {
        list.Add(j);
    }

    //broadCastBlock.Post(list);
    input.Add(list);
 }

 foreach (var inp in input)
 {
     broadCastBlock.Post(inp);
     Thread.Sleep(10);
 }


结果:


方案1(transformManyBlock):
 TransformBlock:以毫秒为单位的经过时间:1029
 TransformBlock:以毫秒为单位的经过时间:1029
方案1(transformManyBlockEmpty):
 TransformBlock:经过的时间(以毫秒为单位):975
 TransformBlock:经过的时间(以毫秒为单位):975
方案1(循环主体中的transformManyBlock,Thread.Sleep(200)):
 TransformBlock:以毫秒为单位的经过时间:972
 TransformBlock:以毫秒为单位的经过时间:972


最后,我将代码改回原始版本,但保留了对
在以下位置创建了列表:

var lists = new List<List<Object1>>();
for (int i = 0; i < numberBlocks; i++)
{
    List<Object1> list = new List<Object1>();
    for (int j = 0; j < collectionSize; j++)
    {
        list.Add(new Object1(j));
    }
    lists.Add(list);
    broadCastBlock.Post(list);
}


结果:


方案1(transformManyBlock):
 TransformBlock:以毫秒为单位的经过时间:6052
 TransformBlock:以毫秒为单位的经过时间:6052
方案1(transformManyBlockEmpty):
 TransformBlock:以毫秒为单位的经过时间:5524
 TransformBlock:以毫秒为单位的经过时间:5524
方案1(循环主体中的transformManyBlock,Thread.Sleep(200)):
 TransformBlock:以毫秒为单位的经过时间:5098
 TransformBlock:以毫秒为单位的经过时间:5098


同样,将Object1从类更改为结构会导致两个块在大约相同的时间(大约快10倍)完成。



更新:下面的答案不足以解释观察到的行为。

在一种情况下,TransformMany lambda内部执行了一个紧密循环,这将占用CPU并耗尽其他线程来占用处理器资源。这就是为什么可以观察到完成延续任务执行延迟的原因。在第二种情况下,在TransformMany lambda内部执行Thread.Sleep,使其他线程有机会执行Completion延续任务。在运行时行为中观察到的差异与TPL数据流无关。为了改善观察到的增量,在场景1中,在循环体内引入Thread.Sleep应该足够了:

for (int counter = 1; counter <= 10000000;  counter++)
{
   double result = Math.Sqrt(counter + 1.0);
   // Back off for a little while
   Thread.Sleep(200);
}




(下面是我的原始答案。我没有仔细阅读过OP的问题,仅在阅读了他的评论后才了解他的要求。我仍然将其留作参考。)

您确定自己正在衡量正确的事情吗?请注意,当您执行以下操作:transformBlock.Completion.ContinueWith(_ => ShutDown());时,时间测量将受到TaskScheduler行为的影响(例如,持续任务开始执行需要多长时间)。尽管我无法观察到您在机器上看到的差异,但是使用专用线程来测量时间时,我得到了更精确的结果(就tfb1和tfb2完成时间之间的差值而言):

       // Within your Test.Start() method...
       Thread timewatch = new Thread(() =>
       {
           var sw = Stopwatch.StartNew();
           tfb1.transformBlock.Completion.Wait();
           Console.WriteLine("tfb1.transformBlock completed within {0} ms",
                              sw.ElapsedMilliseconds);
        });

        Thread timewatchempty = new Thread(() =>
        {
            var sw = Stopwatch.StartNew();
            tfb2.transformBlock.Completion.Wait();
            Console.WriteLine("tfb2.transformBlock completed within {0} ms",
                               sw.ElapsedMilliseconds);
        });

        timewatch.Start();
        timewatchempty.Start();

        //send collection numberBlock-times
        for (int i = 0; i < numberBlocks; i++)
        {
          // ... rest of the code

关于c# - TPL数据流,对核心设计感到困惑,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/13834757/

10-10 07:11