我希望根据另一列中的条件调整一列的值。
我正在使用 np.busday_count,但我不希望周末值表现得像星期一(星期六到星期二有 1 个工作日,我希望它是 2)
dispdf = df[(df.dispatched_at.isnull()==False) & (df.sold_at.isnull()==False)]
dispdf["dispatch_working_days"] = np.busday_count(dispdf.sold_at.tolist(), dispdf.dispatched_at.tolist())
for i in range(len(dispdf)):
if dispdf.dayofweek.iloc[i] == 5 or dispdf.dayofweek.iloc[i] == 6:
dispdf.dispatch_working_days.iloc[i] +=1
样本:
dayofweek dispatch_working_days
43159 1.0 3
48144 3.0 3
45251 6.0 1
49193 3.0 0
42470 3.0 1
47874 6.0 1
44500 3.0 1
43031 6.0 3
43193 0.0 4
43591 6.0 3
预期成绩:
dayofweek dispatch_working_days
43159 1.0 3
48144 3.0 3
45251 6.0 2
49193 3.0 0
42470 3.0 1
47874 6.0 2
44500 3.0 1
43031 6.0 2
43193 0.0 4
43591 6.0 4
目前我正在使用这个 for 循环将工作日添加到星期六和星期日值。很慢!
我可以使用矢量化来加快速度吗?我尝试使用 .apply 但无济于事。
最佳答案
很确定这有效,但有更优化的实现:
def adjust_dispatch(df_line):
if df_line['dayofweek'] >= 5:
return df_line['dispatch_working_days'] + 1
else:
return df_line['dispatch_working_days']
df['dispatch_working_days'] = df.apply(adjust_dispatch, axis=1)