我有一个伦敦的shapefile,其中有4000多个代表lsoa区域的独特多边形。我还创建了代表城市中传感器的点的地理数据框。我需要确定每个传感器属于/位于哪个lsoa区域(即哪个多边形)。因此,理想情况下,我将列出每个sesnsor_id_location及其各自的lsoa号(LSOA11DC)。

我的观点如下:

    pod_id_location Borough Latitude    Longitude   geometry
0   1245    Barnet  51.604486   -0.206551   POINT (-0.20655 51.60449)
1   2245    Camden  51.521880   -0.120434   POINT (-0.12043 51.52188)
2   3245    Camden  51.555485   -0.152338   POINT (-0.15234 51.55548)
3   5245    Wandsworth  51.440399   -0.186775   POINT (-0.18677 51.44040)
4   6245    Hounslow    51.468625   -0.359770   POINT (-0.35977 51.46863)



我的伦敦形状文件如下所示:

    LSOA11CD    LSOA11NM    geometry
0   E01000001   City of London 001A POLYGON ((-0.09729 51.52158, -0.09652 51.52027...
1   E01000002   City of London 001B POLYGON ((-0.08813 51.51941, -0.08929 51.51752...
2   E01000003   City of London 001C POLYGON ((-0.09679 51.52325, -0.09647 51.52282...
3   E01000005   City of London 001E POLYGON ((-0.07323 51.51000, -0.07553 51.50974...
4   E01000006   Barking and Dagenham 016A   POLYGON ((0.09115 51.53909, 0.09326 51.53787, ...




从视觉上看,我的数据如下所示:

python - 返回多边形地理区域内的点列表-LMLPHP

谢谢您的帮助。

最佳答案

我发现使用空间连接的一种非常简单的解决方案,如下所示:

merge = gpd.sjoin(map_df, sensors, how="right", op='contains')



    index_left  LSOA11CD    LSOA11NM    pod_id_location Borough Latitude    Longitude   geometry
index_right
0   199 E01000204   Barnet 025C 1245    Barnet  51.604486   -0.206551   POINT (-0.20655 51.60449)
1   897 E01000915   Camden 027A 2245    Camden  51.521880   -0.120434   POINT (-0.12043 51.52188)

10-08 16:36