我有一个最小二乘最小化问题,该问题受不等式约束的影响,我正在尝试使用scipy.optimize.minimize解决。对于不平等约束,似乎有两种选择:COBYLA和SLSQP。

我首先尝试了SLSQP,因为它允许将函数的显式偏导数最小化。根据问题的严重程度,它会失败并显示错误:

Positive directional derivative for linesearch    (Exit mode 8)


只要施加间隔或更普遍的不平等约束。

先前例如here已经观察到了这一点。手动缩小要最小化的功能(以及相关的偏导数)似乎可以解决此问题,但是我无法通过更改选项中的ftol来实现相同的效果。

总的说来,这整个事情使我对例程的鲁棒性产生怀疑。这是一个简化的示例:

import numpy as np
import scipy.optimize as sp_optimize

def cost(x, A, y):

    e = y - A.dot(x)
    rss = np.sum(e ** 2)

    return rss

def cost_deriv(x, A, y):

    e = y - A.dot(x)
    deriv0 = -2 * e.dot(A[:,0])
    deriv1 = -2 * e.dot(A[:,1])

    deriv = np.array([deriv0, deriv1])

    return deriv


A = np.ones((10,2)); A[:,0] = np.linspace(-5,5, 10)
x_true = np.array([2, 2/20])
y = A.dot(x_true)
x_guess = x_true / 2

prm_bounds = ((0, 3), (0,1))

cons_SLSQP = ({'type': 'ineq', 'fun' : lambda x: np.array([x[0] - x[1]]),
               'jac' : lambda x: np.array([1.0, -1.0])})

# works correctly
min_res_SLSQP = sp_optimize.minimize(cost, x_guess, args=(A, y), jac=cost_deriv, bounds=prm_bounds, method='SLSQP', constraints=cons_SLSQP, options={'disp': True})
print(min_res_SLSQP)

# fails
A = 100 * A
y = A.dot(x_true)
min_res_SLSQP = sp_optimize.minimize(cost, x_guess, args=(A, y), jac=cost_deriv, bounds=prm_bounds, method='SLSQP', constraints=cons_SLSQP, options={'disp': True})
print(min_res_SLSQP)

# works if bounds and inequality constraints removed
min_res_SLSQP = sp_optimize.minimize(cost, x_guess, args=(A, y), jac=cost_deriv,
method='SLSQP', options={'disp': True})
print(min_res_SLSQP)


应该如何设置以避免故障?更一般而言,COBYLA是否会出现类似的问题?对于这类不等式约束最小二乘优化问题,COBYLA是更好的选择吗?

发现在成本函数中使用平方根可以提高性能。但是,对于问题的非线性重新参数化(更简单,但更接近我在实践中需要做的事情),它再次失败。详细信息如下:

import numpy as np
import scipy.optimize as sp_optimize


def cost(x, y, g):

    e = ((y - x[1]) / x[0]) - g

    rss = np.sqrt(np.sum(e ** 2))

    return rss


def cost_deriv(x, y, g):

    e = ((y- x[1]) / x[0]) - g

    factor = 0.5 / np.sqrt(e.dot(e))
    deriv0 = -2 * factor * e.dot(y - x[1]) / (x[0]**2)
    deriv1 = -2 * factor * np.sum(e) / x[0]

    deriv = np.array([deriv0, deriv1])

    return deriv


x_true = np.array([1/300, .1])
N = 20
t = 20 * np.arange(N)
g = 100 * np.cos(2 * np.pi * 1e-3 * (t - t[-1] / 2))
y = g * x_true[0] + x_true[1]

x_guess = x_true / 2
prm_bounds = ((1e-4, 1e-2), (0, .4))

# check derivatives
delta = 1e-9
C0 = cost(x_guess, y, g)
C1 = cost(x_guess + np.array([delta, 0]), y, g)
approx_deriv0 = (C1 - C0) / delta
C1 = cost(x_guess + np.array([0, delta]), y, g)
approx_deriv1 = (C1 - C0) / delta
approx_deriv = np.array([approx_deriv0, approx_deriv1])
deriv = cost_deriv(x_guess, y, g)

# fails
min_res_SLSQP = sp_optimize.minimize(cost, x_guess, args=(y, g), jac=cost_deriv,
bounds=prm_bounds, method='SLSQP', options={'disp': True})
print(min_res_SLSQP)

最佳答案

代替最小化np.sum(e ** 2),最小化sqrt(np.sum(e ** 2))或更好(就计算而言):np.linalg.norm(e)

此修改:


不会更改关于x的解决方案
如果需要原始目标,则将需要后处理(可能不需要)
更坚固


有了这一更改,即使使用数值微分,所有情况都可以工作(我太懒了,无法修改梯度,这需要反映这一点!)。

输出示例(func-evals的数量给出num-diff):

Optimization terminated successfully.    (Exit mode 0)
            Current function value: 3.815547437029837e-06
            Iterations: 16
            Function evaluations: 88
            Gradient evaluations: 16
     fun: 3.815547437029837e-06
     jac: array([-6.09663382, -2.48862544])
 message: 'Optimization terminated successfully.'
    nfev: 88
     nit: 16
    njev: 16
  status: 0
 success: True
       x: array([ 2.00000037,  0.10000018])
Optimization terminated successfully.    (Exit mode 0)
            Current function value: 0.0002354577991007501
            Iterations: 23
            Function evaluations: 114
            Gradient evaluations: 23
     fun: 0.0002354577991007501
     jac: array([ 435.97259208,  288.7483819 ])
 message: 'Optimization terminated successfully.'
    nfev: 114
     nit: 23
    njev: 23
  status: 0
 success: True
       x: array([ 1.99999977,  0.10000014])
Optimization terminated successfully.    (Exit mode 0)
            Current function value: 0.0003392807206384532
            Iterations: 21
            Function evaluations: 112
            Gradient evaluations: 21
     fun: 0.0003392807206384532
     jac: array([ 996.57340243,   51.19298764])
 message: 'Optimization terminated successfully.'
    nfev: 112
     nit: 21
    njev: 21
  status: 0
 success: True
       x: array([ 2.00000008,  0.10000104])


尽管SLSQP可能存在一些问题,但鉴于广泛的应用范围,它仍然是最受测试和最强大的代码之一!

我还希望SLSQP在这里比COBYLA更好,因为COBYLA很大程度上基于线性化。 (但仅作为猜测;考虑最小接口,很容易尝试!)

另类

通常,用于凸二次规划的基于内部点的求解器将是此处的最佳方法。但是为此,您需要保持科学。 (或者SOCP求解器可能会更好...我不确定)。

cvxpy带来了一个很好的建模系统和一个好的开源求解器(ECOS;尽管从技术上讲是一个圆锥形求解器->更通用,更不可靠;但是应该胜过SLSQP)。

使用cvxpy和ECOS,它看起来像:

import numpy as np
import cvxpy as cvx

""" Problem data """
A = np.ones((10,2)); A[:,0] = np.linspace(-5,5, 10)
x_true = np.array([2, 2/20])
y = A.dot(x_true)
x_guess = x_true / 2

prm_bounds = ((0, 3), (0,1))

# problematic case
A = 100 * A
y = A.dot(x_true)

""" Solve """
x = cvx.Variable(len(x_true))
constraints = [x[0] >= x[1]]
for ind, (lb, ub) in enumerate(prm_bounds):  # ineffecient -> matrix-based expr better!
    constraints.append(x[ind] >= lb)
    constraints.append(x[ind] <= ub)

objective = cvx.Minimize(cvx.norm(A*x - y))
problem = cvx.Problem(objective, constraints)
problem.solve(solver=cvx.ECOS, verbose=False)
print(problem.status)
print(problem.value)
print(x.value.T)

# optimal
# -6.67593652593801e-10
# [[ 2.   0.1]]

10-08 13:43