所以问题是:

编写程序以查找第n个超级丑陋的数字。

超丑数是正数,其所有素数都在给定的素数列表k素数中。例如,[1、2、4、7、8、13、14、16、19、26、28、32]是给定素数= [2、7、13、19]的前12个超级丑数的序列尺寸4。

因此,我的算法基本上使用它们遵循的模式查找所有可能的因素,将它们推入数组,对该数组进行排序,然后返回数组中的第n个值。它可以精确地计算所有参数,但是对于第n个较高的值来说速度太慢。

我的问题是执行此操作的正确方法是什么,因为我确信必须有一个更直接的解决方案。我最想知道找到它的背后的理论以及对此是否有某种封闭的公式感到好奇。

 var nthSuperUglyNumber = function(n, primes) {
     xprimes = primes;
     var uglies = [1];
     uglies = getUglyNumbers(n, primes, uglies);
     // return uglies[n-1];
     return uglies[n - 1];
 };

 //                     3                         4
 //1, 2,3,5, || 4,6,10, 9,15, 25, || 8,12,20,18,30,50, 27,45,75, 125 ||
 //   3,2,1     6,3,1,               10,4,1
 //              1            1              1
 //1, 2,3 || 4,6, 9, || 8,12,18, 27 || 16,24,36,54, 81
 //   2,1    3,1        4,1            5,1
 //
 //1, 2,3,5,7 || 4,6,10,14 9,15,21 25,35, 49 ||
 //   4,3,2,1 || 10,6,3,1

 var getUglyNumbers = function(n, primes, uglies) {
     if (n == 1) {
         return uglies;
     }
     var incrFactor = [];

     var j = 0;
     // Initial factor and uglies setup
     for (; j < primes.length; j += 1) {
         incrFactor[j] = primes.length - j;
         uglies.push(primes[j]);
     }

     //recrusive algo
     uglies = calcUglies(n, uglies, incrFactor);
     uglies.sort(function(a, b) {
     return a - b;
     });
     return uglies;
 };

 var calcUglies = function(n, uglies, incrFactor) {
     if (uglies.length >= 5 * n) return uglies;
     var currlength = uglies.length;
     var j = 0;
     for (j = 0; j < xprimes.length; j += 1) {
         var i = 0;
         var start = currlength - incrFactor[j];
         for (i = start; i < currlength; i += 1) {
             uglies.push(xprimes[j] * uglies[i]);
         }
     }
     // Upgrades the factors to level 2
     for (j = 1; j < xprimes.length; j += 1) {
         incrFactor[xprimes.length - 1 - j] = incrFactor[xprimes.length - j] + incrFactor[xprimes.length - 1 - j];
     }

     return calcUglies(n, uglies, incrFactor);
 };

最佳答案

public static ArrayList<Integer> superUgly(int[] primes,int size)
{
    Arrays.sort(primes);
    int pLen = primes.length;

    ArrayList<Integer> ans = new ArrayList<>();
    ans.add(1);

    PriorityQueue<pair> priorityQueue = new PriorityQueue<>(Comparator.comparingInt(p -> p.value));
    HashSet<Integer> hashSet = new HashSet<>();

    int next_ugly_number;
    int[] indices = new int[pLen];

    for(int i=0;i<pLen;i++) {
        hashSet.add(primes[i]);
        priorityQueue.add(new pair(i,primes[i]));
    }

    while(ans.size()!=size+1)
    {
        pair pair = priorityQueue.poll();
        next_ugly_number = pair.value;
        ans.add(next_ugly_number);
        indices[pair.index]+=1;

        int temp = ans.get(indices[pair.index])*primes[pair.index];
        if (!hashSet.contains(temp))
        {
            priorityQueue.add(new pair(pair.index,temp));
            hashSet.add(temp);
        }
        else {
            while(hashSet.contains(temp))
            {
                indices[pair.index]+=1;
                 temp = ans.get(indices[pair.index])*primes[pair.index];

            }
            priorityQueue.add(new pair(pair.index,temp));
            hashSet.add(temp);

        }

    }

    ans.remove(0);
    return ans;
}


配对课程为

class pair
{
    int index,value;
    public pair(int i,int v)
    {
        index = i;
        value = v;
    }
}


它返回大小为“ size”的丑陋数字的列表。
我正在使用优先级队列来查找每个循环的最小值,并使用一个哈希集来避免在priorityQueue中重复条目。
因此,其时间复杂度为O(n log(k)),其中n是大小,而k是素数数组大小。

10-08 07:37