原文链接:https://www.cnblogs.com/hexinwei1/p/10000779.html
小总结
- HashMap、Hashtable、ConcurrentHashMap
HashMap:线程不安全
Hashtable:线程安全,每个方法都加了synchronized修饰。类似Collections.synchronizedMap(hashMap)
对读写加锁,独占式,一个线程在读的时候其他线程必须等待,吞吐量较低,性能较为底下
ConcurrentHashMap:利用CAS+Synchronized来保证并发的安全性。数据结构类同HashMap
- ConcurrentHashMap如何实现线程安全?
(1)get()方法使用tabAt(Node[], int)方法
调用Unsafe的native方法getObjectVolatile(Object obj, long offset);
// 获取obj对象中offset便宜地址对饮的object性field的值,支持volatileload语义,即:让缓存中的数据失效,重新从主内存加载数据
(2)put()方法
需要获取数组上的Node时同时使用tabAt()方法
设置数组上Node是使用casTabAt()方法,casTabAt()调用Unsafe的native方法compareAndSwapObject(),CAS操作
哈希冲突之后,需要操作改hash值对应的链表/红黑树,此时synchronized(该链表第一个Node)保证线程安全的基础上,减小了锁的粒度
- 线程安全的容器只能保证自身的数据不被破坏,但无法保证业务的行为是否正确
public static void demo1(){ final Map<String, Integer> count = new ConcurrentHashMap<>(); final CountDownLatch endLatch = new CountDownLatch(2); Runnable task = new Runnable() { @Override public void run() { for (int i = 0; i < 5; i++) { Integer value = count.get("a"); if (null == value) { count.put("a", 1); } else { count.put("a", value + 1); } } endLatch.countDown(); } }; new Thread(task).start(); new Thread(task).start(); try { endLatch.await(); System.out.println(count); } catch (Exception e) { e.printStackTrace(); } }
demo1是两个线程操作ConcurrentHashMap,意图将value变为10。但是,因为多个线程用相同的key调用时,很可能会覆盖相互的结果,造成记录的次数比实际出现的次数少
可以使用锁解决这个问题,也可以使用ConcurrentHashMap定义的方法:
V putIfAbsent(K key, V value) 如果key对应的value不存在,则put进去,返回null。否则不put,返回已存在的value。 boolean remove(Object key, Object value) 如果key对应的值是value,则移除K-V,返回true。否则不移除,返回false。 boolean replace(K key, V oldValue, V newValue) 如果key对应的当前值是oldValue,则替换为newValue,返回true。否则不替换,返回false。
修改:
public static void demo1() { final Map<String, Integer> count = new ConcurrentHashMap<>(); final CountDownLatch endLatch = new CountDownLatch(2); Runnable task = new Runnable() { @Override public void run() { Integer oldValue, newValue; for (int i = 0; i < 5; i++) { while (true) { oldValue = count.get("a"); if (null == oldValue) { newValue = 1; if (count.putIfAbsent("a", newValue) == null) { break; } } else { newValue = oldValue + 1; if (count.replace("a", oldValue, newValue)) { break; } } } } endLatch.countDown(); } }; new Thread(task).start(); new Thread(task).start(); try { endLatch.await(); System.out.println(count); } catch (Exception e) { e.printStackTrace(); } }
由于ConcurrentHashMap中不能保存value为null的值,所以需要处理不存在和已存在两种情况,不过可以使用AtomicInteger来替代。
public static void demo1() { final Map<String, AtomicInteger> count = new ConcurrentHashMap<>(); final CountDownLatch endLatch = new CountDownLatch(2); Runnable task = new Runnable() { @Override public void run() { AtomicInteger oldValue; for (int i = 0; i < 5; i++) { oldValue = count.get("a"); if (null == oldValue) { AtomicInteger zeroValue = new AtomicInteger(0); oldValue = count.putIfAbsent("a", zeroValue); if (null == oldValue) { oldValue = zeroValue; } } oldValue.incrementAndGet(); } endLatch.countDown(); } }; new Thread(task).start(); new Thread(task).start(); try { endLatch.await(); System.out.println(count); } catch (Exception e) { e.printStackTrace(); } }
属性
// 最大容量:2^30=1073741824 private static final int MAXIMUM_CAPACITY = 1 << 30; // 默认初始值,必须是2的幕数 private static final int DEFAULT_CAPACITY = 16; // static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; // private static final int DEFAULT_CONCURRENCY_LEVEL = 16; // private static final float LOAD_FACTOR = 0.75f; // 链表转红黑树阀值,> 8 链表转换为红黑树 static final int TREEIFY_THRESHOLD = 8; //树转链表阀值,小于等于6(tranfer时,lc、hc=0两个计数器分别++记录原bin、新binTreeNode数量,<=UNTREEIFY_THRESHOLD 则untreeify(lo)) static final int UNTREEIFY_THRESHOLD = 6; // static final int MIN_TREEIFY_CAPACITY = 64; // private static final int MIN_TRANSFER_STRIDE = 16; // private static int RESIZE_STAMP_BITS = 16; // 2^15-1,help resize的最大线程数 private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1; // 32-16=16,sizeCtl中记录size大小的偏移量 private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS; // forwarding nodes的hash值 static final int MOVED = -1; // 树根节点的hash值 static final int TREEBIN = -2; // ReservationNode的hash值 static final int RESERVED = -3; // 可用处理器数量 static final int NCPU = Runtime.getRuntime().availableProcessors();
几个很重要的概念:
- table:用来存放Node节点数据的,默认为null,默认大小为16的数组,每次扩容时大小总是2的幂次方;
- nextTable:扩容时新生成的数据,数组为table的两倍;
- Node:节点,保存key-value的数据结构;
- ForwardingNode:一个特殊的Node节点,hash值为-1,其中存储nextTable的引用。只有table发生扩容的时候,ForwardingNode才会发挥作用,作为一个占位符放在table中表示当前节点为null或者已经被移动;
- sizeCtrl:控制标识符,用来控制table初始化和扩容操作的,在不同的地方有不同的用途,其值也不同,所代表的含义也不同
- 负数代表正在进行初始化或扩容操作
- -1代表正在初始化
- -N表示有N-1个线程正在进行扩容操作
- 正数或0代表hash表还没有被初始化,这个数值表示初始化或下一次进行扩容的大小
构造函数
public ConcurrentHashMap() { } public ConcurrentHashMap(int initialCapacity) { if (initialCapacity < 0) throw new IllegalArgumentException(); int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY : tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1)); this.sizeCtl = cap; } public ConcurrentHashMap(Map<? extends K, ? extends V> m) { this.sizeCtl = DEFAULT_CAPACITY; putAll(m); } public ConcurrentHashMap(int initialCapacity, float loadFactor) { this(initialCapacity, loadFactor, 1); } public ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel) { if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0) throw new IllegalArgumentException(); if (initialCapacity < concurrencyLevel) // Use at least as many bins initialCapacity = concurrencyLevel; // as estimated threads long size = (long)(1.0 + (long)initialCapacity / loadFactor); int cap = (size >= (long)MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : tableSizeFor((int)size); this.sizeCtl = cap; }
put()方法
public V put(K key, V value) { return putVal(key, value, false); } final V putVal(K key, V value, boolean onlyIfAbsent) { if (key == null || value == null) throw new NullPointerException(); // 得到 hash 值 int hash = spread(key.hashCode()); // 用于记录相应链表的长度 int binCount = 0; for (Node<K,V>[] tab = table;;) { Node<K,V> f; int n, i, fh; // 如果数组"空",进行数组初始化 if (tab == null || (n = tab.length) == 0) // 初始化数组,后面会详细介绍 tab = initTable(); // 找该 hash 值对应的数组下标,得到第一个节点 f else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) { // 如果数组该位置为空, // 用一次 CAS 操作将这个新值放入其中即可,这个 put 操作差不多就结束了,可以拉到最后面了 // 如果 CAS 失败,那就是有并发操作,进到下一个循环就好了 if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value, null))) break; // no lock when adding to empty bin } // hash 居然可以等于 MOVED,这个需要到后面才能看明白,不过从名字上也能猜到,肯定是因为在扩容 else if ((fh = f.hash) == MOVED) // 帮助数据迁移,这个等到看完数据迁移部分的介绍后,再理解这个就很简单了 tab = helpTransfer(tab, f); else { // 到这里就是说,f 是该位置的头结点,而且不为空 V oldVal = null; // 获取数组该位置的头结点的监视器锁 synchronized (f) { if (tabAt(tab, i) == f) { if (fh >= 0) { // 头结点的 hash 值大于 0,说明是链表 // 用于累加,记录链表的长度 binCount = 1; // 遍历链表 for (Node<K,V> e = f;; ++binCount) { K ek; // 如果发现了"相等"的 key,判断是否要进行值覆盖,然后也就可以 break 了 if (e.hash == hash && ((ek = e.key) == key || (ek != null && key.equals(ek)))) { oldVal = e.val; if (!onlyIfAbsent) e.val = value; break; } // 到了链表的最末端,将这个新值放到链表的最后面 Node<K,V> pred = e; if ((e = e.next) == null) { pred.next = new Node<K,V>(hash, key, value, null); break; } } } else if (f instanceof TreeBin) { // 红黑树 Node<K,V> p; binCount = 2; // 调用红黑树的插值方法插入新节点 if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key, value)) != null) { oldVal = p.val; if (!onlyIfAbsent) p.val = value; } } } } if (binCount != 0) { // 判断是否要将链表转换为红黑树,临界值和 HashMap 一样,也是 8 if (binCount >= TREEIFY_THRESHOLD) // 这个方法和 HashMap 中稍微有一点点不同,那就是它不是一定会进行红黑树转换, // 如果当前数组的长度小于 64,那么会选择进行数组扩容,而不是转换为红黑树 // 具体源码我们就不看了,扩容部分后面说 treeifyBin(tab, i); if (oldVal != null) return oldVal; break; } } } // addCount(1L, binCount); return null; }
按照上面的源码,我们可以确定put整个流程如下:
- 判空;ConcurrentHashMap的key,value都不允许为null
- 计算hash。利用方法计算hash值
- 遍历table,进行节点插入操作,过程如下:
- 如果table为空,则表示ConcurrentHashMap还没有初始化,则进行初始化操作:initTable()
- 根据hash值获取节点的位置i,若该位置为空,则直接插入,这个过程是不需要加锁的。计算f位置:i=(n - 1) & hash
- 如果检测到fh = f.hash == -1,则f是ForwardingNode节点,表示有其他线程正在进行扩容操作,则帮助线程一起进行扩容操作
- 如果f.hash >= 0 表示是链表结构,则遍历链表,如果存在当前key节点则替换value,否则插入到链表尾部。如果f是TreeBin类型节点,则按照红黑树的方法更新或者增加节点
- 若链表长度 > TREEIFY_THRESHOLD(默认是8),则将链表转换成红黑树结构
- 调用addCount方法,ConcurrentHashMap的size + 1
这里整个put操作已经完成
get()
public V get(Object key) { Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek; // 计算hash int h = spread(key.hashCode()); if ((tab = table) != null && (n = tab.length) > 0 && (e = tabAt(tab, (n - 1) & h)) != null) { // 搜索到的节点key与传入的key相同且不为null,直接返回这个节点 if ((eh = e.hash) == h) { if ((ek = e.key) == key || (ek != null && key.equals(ek))) return e.val; } // 树 else if (eh < 0) return (p = e.find(h, key)) != null ? p.val : null; // 链表,遍历 while ((e = e.next) != null) { if (e.hash == h && ((ek = e.key) == key || (ek != null && key.equals(ek)))) return e.val; } } return null; }
get操作:
- 计算hash值
- 判断table是否为空,如果为空,直接返回null
- 根据hash值获取table中的Node节点(tabAt(tab, (n - 1) & h))
然后根据链表或者树形方式找到相对应的节点,返回其value值
扩容
// 首先要说明的是,方法参数 size 传进来的时候就已经翻了倍了 private final void tryPresize(int size) { // c:size 的 1.5 倍,再加 1,再往上取最近的 2 的 n 次方。 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY : tableSizeFor(size + (size >>> 1) + 1); int sc; while ((sc = sizeCtl) >= 0) { Node<K,V>[] tab = table; int n; // 这个 if 分支和之前说的初始化数组的代码基本上是一样的,在这里,我们可以不用管这块代码 if (tab == null || (n = tab.length) == 0) { n = (sc > c) ? sc : c; if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { try { if (table == tab) { @SuppressWarnings("unchecked") Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n]; table = nt; sc = n - (n >>> 2); // 0.75 * n } } finally { sizeCtl = sc; } } } else if (c <= sc || n >= MAXIMUM_CAPACITY) break; else if (tab == table) { // 我没看懂 rs 的真正含义是什么,不过也关系不大 int rs = resizeStamp(n); if (sc < 0) { Node<K,V>[] nt; if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || sc == rs + MAX_RESIZERS || (nt = nextTable) == null || transferIndex <= 0) break; // 2. 用 CAS 将 sizeCtl 加 1,然后执行 transfer 方法 // 此时 nextTab 不为 null if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) transfer(tab, nt); } // 1. 将 sizeCtl 设置为 (rs << RESIZE_STAMP_SHIFT) + 2) // 我是没看懂这个值真正的意义是什么?不过可以计算出来的是,结果是一个比较大的负数 // 调用 transfer 方法,此时 nextTab 参数为 null else if (U.compareAndSwapInt(this, SIZECTL, sc, (rs << RESIZE_STAMP_SHIFT) + 2)) transfer(tab, null); } } }
这个方法的核心在于 sizeCrl 值的操作,首先将其设置为一个附属,然后执行 transfer(tab, null),在下一个循环将 sizeCtl 加1,并执行 transfer(tab, nt), 之后可能是继续 sizeCtl 加 1,并执行 transfer(tab, nt)。
所以,可能得操作就是执行1次 transfer(tab, null) + 多次 transfer(tab, nt)。
参考资料/相关推荐
死磕Java并发—–J.U.C之Java并发容器:ConcurrentHashMap(http://cmsblogs.com/?p=2283)
ConcurrentHashMap使用示例(https://my.oschina.net/mononite/blog/144329)
ConcurrentHashMap使用示例(https://blog.csdn.net/zero__007/article/details/49833819)
Java7/8 中的 HashMap 和 ConcurrentHashMap 全解析(https://javadoop.com/post/hashmap#Java8%20HashMap)