除了通过子类化(例如,从list
继承)之外,如何使python对象隐式转换为ndarray
?
例:
import numpy
arg=[0,1,2]
numpy.dot(arg,arg) # OK, arg is converted to ndarray
#Looks somewhat array like, albeit without support for slices
class A(object):
def __init__(self, x=0,y=1,z=2):
(self.x,self.y,self.z)=(x,y,z)
def __getitem__(self, idx):
if idx==0:
return self.x
elif idx==1:
return self.y
elif idx==2:
return self.z
else:
raise IndexError()
def __setitem__(self, idx, val):
if idx==0:
self.x=val
elif idx==1:
self.y=val
elif idx==2:
self.z=val
else:
raise IndexError()
def __iter__(self):
for v in (self.x,self.y,self.z):
yield v
# Is there a set of functions I can add here to allow
# numpy to convert instances of A into ndarrays?
arg=A()
numpy.dot(arg,arg) # does not work
错误:
>>> scipy.dot(a,a) # I use scipy by default
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
/home/dave/tmp/<ipython-input-9-f73d996ba2b6> in <module>()
----> 1 scipy.dot(a,a)
TypeError: unsupported operand type(s) for *: 'A' and 'A'
它正在调用
array(arg)
,但会产生一个类似于[arg,]
的数组,它是shape==()
,因此dot
尝试将A
实例相乘。可以(实际上是预期的)转换为
ndarray
将需要复制数据。 最佳答案
__len__
似乎是关键功能:只需添加一个
def __len__(self):
return 3
使课程在
numpy.dot
中进行。