This question was migrated from Data Science Stack Exchange because it can be answered on Stack Overflow. Migrated去年。Learn more
例如:我有,

df = pd.DataFrame({0: [420, np.nan, 455, np.nan, np.nan, np.nan]})

df

       0
0  420.0
1    NaN
2  455.0
3    NaN
4    NaN
5    NaN

然后使用:
df[0].isnull().astype(int)

0    0
1    1
2    0
3    1
4    1
5    1
Name: 0, dtype: int64

我明白了
df[0].fillna(method='ffill') - df[0].isnull().astype(int)

0    420.0
1    419.0
2    455.0
3    454.0
4    454.0
5    454.0
Name: 0, dtype: float64

我想得到0,1,0,1,2,3,最后:
df[0]=420419455;454453452

最佳答案

groupbycumcount

df[0].ffill() - df.groupby(df[0].notna().cumsum()).cumcount()

0    420.0
1    419.0
2    455.0
3    454.0
4    453.0
5    452.0
dtype: float64

详情
定义组
df[0].notna().cumsum()

0    1
1    1
2    2
3    2
4    2
5    2
Name: 0, dtype: int64

groupby一起在cumcount中使用
df.groupby(df[0].notna().cumsum()).cumcount()

0    0
1    1
2    0
3    1
4    2
5    3
dtype: int64

10-07 23:28