Demo:https://github.com/caozhiyuan/ClrProfiler.Trace
背景
为了实现自动、无依赖地跟踪分析应用程序性能(达到商业级APM效果),作者希望能动态修改应用字节码。在相关调研之后,决定采用profiler api进行实现。
介绍
作者将对.NET ClrProfiler 字节码重写技术进行相关阐述。
Profiler是微软提供的一套跟踪和分析应用的工具,其提供了一套api可以跟踪和分析.NET程序运行情况。其原理架构图如下:
本文所使用的方式是直接对方法字节码进行重写,动态引用程序集、插入异常捕捉代码、插入执行前后代码。
其中相关基础概念涉及CLI标准(ECMS-355),CLI标准对公用语言运行时进行了详细的描述。
本文主要涉及到 :
1. 程序集定义、引用
2. 类型定义、引用
3. 方法定义、引用
4. 操作码
5. 签名(此文对签名格式举了很多例子,可以帮助理解)
实现
在此文中提供了入门级讲解,下面我们直接正题。
在JIt编译时候将会对CorProfiler类进行初始化,在此环节我们主要对于监听的事件进行订阅和配置初始化工作,我们主要关心ModuleLoad事件。
HRESULT STDMETHODCALLTYPE CorProfiler::Initialize(IUnknown *pICorProfilerInfoUnk) { const HRESULT queryHR = pICorProfilerInfoUnk->QueryInterface(__uuidof(ICorProfilerInfo8), reinterpret_cast<void **>(&this->corProfilerInfo)); if (FAILED(queryHR)) { return E_FAIL; } const DWORD eventMask = COR_PRF_MONITOR_JIT_COMPILATION | COR_PRF_DISABLE_TRANSPARENCY_CHECKS_UNDER_FULL_TRUST | /* helps the case where this profiler is used on Full CLR */ COR_PRF_DISABLE_INLINING | COR_PRF_MONITOR_MODULE_LOADS | COR_PRF_DISABLE_ALL_NGEN_IMAGES; this->corProfilerInfo->SetEventMask(eventMask); this->clrProfilerHomeEnvValue = GetEnvironmentValue(ClrProfilerHome); if(this->clrProfilerHomeEnvValue.empty()) { Warn("ClrProfilerHome Not Found"); return E_FAIL; } this->traceConfig = LoadTraceConfig(this->clrProfilerHomeEnvValue); if (this->traceConfig.traceAssemblies.empty()) { Warn("TraceAssemblies Not Found"); return E_FAIL; } Info("CorProfiler Initialize Success"); return S_OK; }
在ModuleLoadFinished后,我们主要获取程序集的EntryPointToken(mian方法token)、运行时mscorlib.dll(net framework)或System.Private.CoreLib.dll(netcore)程序版本基础信息以供后面动态引用。
HRESULT STDMETHODCALLTYPE CorProfiler::ModuleLoadFinished(ModuleID moduleId, HRESULT hrStatus) { auto module_info = GetModuleInfo(this->corProfilerInfo, moduleId); if (!module_info.IsValid() || module_info.IsWindowsRuntime()) { return S_OK; } if (module_info.assembly.name == "dotnet"_W || module_info.assembly.name == "MSBuild"_W) { return S_OK; } const auto entryPointToken = module_info.GetEntryPointToken(); ModuleMetaInfo* module_metadata = new ModuleMetaInfo(entryPointToken, module_info.assembly.name); { std::lock_guard<std::mutex> guard(mapLock); moduleMetaInfoMap[moduleId] = module_metadata; } if (entryPointToken != mdTokenNil) { Info("Assembly:{} EntryPointToken:{}", ToString(module_info.assembly.name), entryPointToken); } if (module_info.assembly.name == "mscorlib"_W || module_info.assembly.name == "System.Private.CoreLib"_W) { if(!corAssemblyProperty.szName.empty()) { return S_OK; } CComPtr<IUnknown> metadata_interfaces; auto hr = corProfilerInfo->GetModuleMetaData(moduleId, ofRead | ofWrite, IID_IMetaDataImport2, metadata_interfaces.GetAddressOf()); RETURN_OK_IF_FAILED(hr); auto pAssemblyImport = metadata_interfaces.As<IMetaDataAssemblyImport>( IID_IMetaDataAssemblyImport); if (pAssemblyImport.IsNull()) { return S_OK; } mdAssembly assembly; hr = pAssemblyImport->GetAssemblyFromScope(&assembly); RETURN_OK_IF_FAILED(hr); hr = pAssemblyImport->GetAssemblyProps( assembly, &corAssemblyProperty.ppbPublicKey, &corAssemblyProperty.pcbPublicKey, &corAssemblyProperty.pulHashAlgId, NULL, 0, NULL, &corAssemblyProperty.pMetaData, &corAssemblyProperty.assemblyFlags); RETURN_OK_IF_FAILED(hr); corAssemblyProperty.szName = module_info.assembly.name; return S_OK; } return S_OK; }
下面进行方法编译,在JITCompilationStarted时,我们会进行Main方法字节码插入动态加载Trace程序集(Main方法前添加Assembly.LoadFrom(path))。
在指定方法编译时,我们需要对方法签名进行分析,方法签名中主要包含方法调用方式、参数个数、泛型参数个数、返回类型、参数类型集合。
在分析完方法签名和方法名后与我们配置的方法进行匹配,如果一致进行IL重写。我们会对代码修改成如下方式:
public string Test(string a, int? b, int c) { object ret = null; Exception ex = null; MethodTrace methodTrace = null; try { methodTrace= TraceAgent.GetInstance().BeforeMethod("Test", this, new object[] { a, b, c }); ret = "1"; goto T; } catch (Exception e) { ex = e; throw; } finally { if (methodTrace != null) { methodTrace.EndMethod(ret, ex); } } T: return (string)ret; }
其中主要包含方法本地变量签名重写、方法体字节重写(包含代码体、异常体)。
方法本地变量签名重写代码:
// add ret ex methodTrace var to local var HRESULT ModifyLocalSig(CComPtr<IMetaDataImport2>& pImport, CComPtr<IMetaDataEmit2>& pEmit, ILRewriter& reWriter, mdTypeRef exTypeRef, mdTypeRef methodTraceTypeRef) { HRESULT hr; PCCOR_SIGNATURE rgbOrigSig = NULL; ULONG cbOrigSig = 0; UNALIGNED INT32 temp = 0; if (reWriter.m_tkLocalVarSig != mdTokenNil) { IfFailRet(pImport->GetSigFromToken(reWriter.m_tkLocalVarSig, &rgbOrigSig, &cbOrigSig)); //Check Is ReWrite or not const auto len = CorSigCompressToken(methodTraceTypeRef, &temp); if(cbOrigSig - len > 0){ if(rgbOrigSig[cbOrigSig - len -1]== ELEMENT_TYPE_CLASS){ if (memcmp(&rgbOrigSig[cbOrigSig - len], &temp, len) == 0) { return E_FAIL; } } } } auto exTypeRefSize = CorSigCompressToken(exTypeRef, &temp); auto methodTraceTypeRefSize = CorSigCompressToken(methodTraceTypeRef, &temp); ULONG cbNewSize = cbOrigSig + 1 + 1 + methodTraceTypeRefSize + 1 + exTypeRefSize; ULONG cOrigLocals; ULONG cNewLocalsLen; ULONG cbOrigLocals = 0; if (cbOrigSig == 0) { cbNewSize += 2; reWriter.cNewLocals = 3; cNewLocalsLen = CorSigCompressData(reWriter.cNewLocals, &temp); } else { cbOrigLocals = CorSigUncompressData(rgbOrigSig + 1, &cOrigLocals); reWriter.cNewLocals = cOrigLocals + 3; cNewLocalsLen = CorSigCompressData(reWriter.cNewLocals, &temp); cbNewSize += cNewLocalsLen - cbOrigLocals; } const auto rgbNewSig = new COR_SIGNATURE[cbNewSize]; *rgbNewSig = IMAGE_CEE_CS_CALLCONV_LOCAL_SIG; ULONG rgbNewSigOffset = 1; memcpy(rgbNewSig + rgbNewSigOffset, &temp, cNewLocalsLen); rgbNewSigOffset += cNewLocalsLen; if (cbOrigSig > 0) { const auto cbOrigCopyLen = cbOrigSig - 1 - cbOrigLocals; memcpy(rgbNewSig + rgbNewSigOffset, rgbOrigSig + 1 + cbOrigLocals, cbOrigCopyLen); rgbNewSigOffset += cbOrigCopyLen; } rgbNewSig[rgbNewSigOffset++] = ELEMENT_TYPE_OBJECT; rgbNewSig[rgbNewSigOffset++] = ELEMENT_TYPE_CLASS; exTypeRefSize = CorSigCompressToken(exTypeRef, &temp); memcpy(rgbNewSig + rgbNewSigOffset, &temp, exTypeRefSize); rgbNewSigOffset += exTypeRefSize; rgbNewSig[rgbNewSigOffset++] = ELEMENT_TYPE_CLASS; methodTraceTypeRefSize = CorSigCompressToken(methodTraceTypeRef, &temp); memcpy(rgbNewSig + rgbNewSigOffset, &temp, methodTraceTypeRefSize); rgbNewSigOffset += methodTraceTypeRefSize; IfFailRet(pEmit->GetTokenFromSig(&rgbNewSig[0], cbNewSize, &reWriter.m_tkLocalVarSig)); return S_OK; }
方法体重写主要涉及到如下数据结构:
struct ILInstr { ILInstr* m_pNext; ILInstr* m_pPrev; unsigned m_opcode; unsigned m_offset; union { ILInstr* m_pTarget; INT8 m_Arg8; INT16 m_Arg16; INT32 m_Arg32; INT64 m_Arg64; }; }; struct EHClause { CorExceptionFlag m_Flags; ILInstr* m_pTryBegin; ILInstr* m_pTryEnd; ILInstr* m_pHandlerBegin; // First instruction inside the handler ILInstr* m_pHandlerEnd; // Last instruction inside the handler union { DWORD m_ClassToken; // use for type-based exception handlers ILInstr* m_pFilter; // use for filter-based exception handlers // (COR_ILEXCEPTION_CLAUSE_FILTER is set) }; };
il_rewriter.cpp会将方法体字节解析成一个双向链表,便于我们在链表中插入字节码。我们在方法头指针前插入pre执行代码,同时新建一个ret指针,原ret操作码全部改为goto到新建的ret指针处(需要判断方法返回类型,进行适当装箱拆箱处理),然后我们新增catch 和finally块字节码,最后我们为原方法新增catch和finall异常处理体。这样我们就实现了整个方法的拦截。
最后看我们TraceAgent代码实现,我们通过Type和functiontoken获取到MethodBase,然后通过配置获取目标跟踪程序集实现对方法的跟踪和分析。
public EndMethodDelegate BeforeWrappedMethod(object type, object invocationTarget, object[] methodArguments, uint functionToken) { if (invocationTarget == null) { throw new ArgumentException(nameof(invocationTarget)); } var traceMethodInfo = new TraceMethodInfo { InvocationTarget = invocationTarget, MethodArguments = methodArguments, Type = (Type) type }; var functionInfo = GetFunctionInfoFromCache(functionToken, traceMethodInfo); traceMethodInfo.MethodBase = functionInfo.MethodBase; if (functionInfo.MethodWrapper == null) { PrepareMethodWrapper(functionInfo, traceMethodInfo); } return functionInfo.MethodWrapper?.BeforeWrappedMethod(traceMethodInfo); }
结论
通过Profiler API我们动态实现了.NET应用的跟踪和分析,并且只要配置环境变量(profiler.dll目录等)。与传统的dynamicproxy或手动埋点相比,其更加灵活,且无依赖。
参考
NET-file-format-Signatures-under-the-hood