我想从类型为map<string, int>的cassandra列系列中读取数据,并将其转换为Pandas数据框。我还想在虹膜种类分类中使用哪一个进一步在python中训练模型,如here所述。

如果可以,我会使用csv来训练模型。那么它看起来像这样:

label,  f1, f2, f3, f4, f5
  0  ,  11 , 1, 6 , 1,  2
  1  ,  5,   5, 1 , 2,  6
  0  ,  12,  9, 3 , 6,  8
  0  ,  9,  3,  8,  1,  0


卡桑德拉柱系列:

                  FeatureSet                    |   label

{'f1': 11, 'f2': 1, 'f3': 6, 'f4': 1, 'f5': 2}  |     0
{'f1': 5, 'f2':  5, 'f3': 1, 'f4': 2, 'f5': 6}  |     1
{'f1': 12, 'f2': 9, 'f3': 3, 'f4': 6, 'f5': 8}  |     0
{'f1': 9, 'f2': 3, 'f3': 8, 'f4': 1, 'f5': 0}   |     0


码:

import pandas as pd
from sklearn2pmml import PMMLPipeline
from sklearn.tree import DecisionTreeClassifier
from cassandra.cluster import Cluster

CASSANDRA_HOST = ['172.16.X.Y','172.16.X1.Y1']
CASSANDRA_PORT = 9042
CASSANDRA_DB = "KEYSPACE"
CASSANDRA_TABLE = "COLUMNFAMILY"

cluster = Cluster(contact_points=CASSANDRA_HOST, port=CASSANDRA_PORT)
session = cluster.connect(CASSANDRA_DB)

sql_query = "SELECT * FROM {}.{};".format(CASSANDRA_DB, CASSANDRA_TABLE)

df = pd.DataFrame()

for row in session.execute(sql_query):
            What should i write here and get X_train, Y_train in pandas dataframe



iris_pipeline = PMMLPipeline([
    ("classifier", DecisionTreeClassifier())
])
iris_pipeline.fit(X_train, Y_train)

最佳答案

您可以使用this approach

import pandas as pd
from cassandra.cluster import Cluster

def pandas_factory(colnames, rows):
    return pd.DataFrame(rows, columns=colnames)

CASSANDRA_HOST = ['172.16.X.Y','172.16.X1.Y1']
CASSANDRA_PORT = 9042
CASSANDRA_DB = "KEYSPACE"
CASSANDRA_TABLE = "COLUMNFAMILY"

cluster = Cluster(contact_points=CASSANDRA_HOST, port=CASSANDRA_PORT)
session = cluster.connect(CASSANDRA_DB)

session.row_factory = pandas_factory
session.default_fetch_size = None

query = "SELECT * FROM {}.{};".format(CASSANDRA_DB, CASSANDRA_TABLE)

rslt = session.execute(query, timeout=None)
df = rslt._current_rows

10-07 15:26