使用Mathematica,我需要优化根据BinCounts
定义的函数;
我想要最大化的参数定义了bin的切入点。
我认为问题在于Mathematica扩展了目标函数
在论证之前,先给出数值
值,因此BinCounts
提示bin规范不是“a
包含实数值,无穷大和-无穷大的列表”。
我认为以下是我所经历的事情的一个最小示例
尝试做的事情和正在发生的事情。我非常感谢您的建议
如何解决这个问题。
In[1]:= data = RandomReal[1, 30]; (* Make some test data. *)
In[2]:= f[a_, b_, c_] := BinCounts[data, {{0, a, b, c, 1}}] (* Shorthand to use below… *)
In[12]:= g[a_, b_, c_] := Max[f[a, b, c]] - Min[f[a, b, c]] (* Objective function. *)
In[13]:= NMaximize[{g[a, b, c], 0 < a < b < c < 1}, {a, b, c}] (* Try to oprimize. *)
During evaluation of In[13]:= BinCounts::cvals: The bin specification {{0,a,b,c,1}} is not a list containing real values, Infinity, and -Infinity. >>
During evaluation of In[13]:= BinCounts::cvals: The bin specification {{0,a,b,c,1}} is not a list containing real values, Infinity, and -Infinity. >>
During evaluation of In[13]:= BinCounts::cvals: The bin specification {{0,a,b,c,1}} is not a list containing real values, Infinity, and -Infinity. >>
During evaluation of In[13]:= General::stop: Further output of BinCounts::cvals will be suppressed during this calculation. >>
Out[13]= {0., {a -> 0., b -> 0., c -> 1.}}
最佳答案
解决方案只是指定仅根据数字参数来定义目标函数,如下所示:
g[a_?NumericQ, b_?NumericQ, c_?NumericQ] := Max[f[a, b, c]] - Min[f[a, b, c]]