我有一个熊猫数据框,其中的列Date_of_Purchase
具有许多datetime
值:
dop_phev = rebates[rebates['Vehicle_Type']=='Plug-in Hybrid']['Date_of_Purchase']
dop_phev
输出:
0 2015-07-20
1 2015-07-20
3 2015-07-20
4 2015-07-24
5 2015-07-24
...
502 2017-09-16
503 2017-09-18
504 2017-06-14
505 2017-09-21
506 2017-09-22
Name: Date_of_Purchase, Length: 383, dtype: datetime64[ns]`
我想绘制累计购买量
y
与日期x
的关系图。我开始研究一个解决方案,其中遍历每个日期并计算少于该日期的所有日期,但这绝对是一个“非Python的”解决方案。如何使用pythonic代码完成此操作?编辑:我不确定到底是什么样,但这是我当前的解决方案:
dop_phev = rebates[rebates['Vehicle_Type']=='Plug-in Hybrid']['Date_of_Purchase']
cum_count = np.zeros(len(dop_phev.unique()))
for i, date in enumerate(dop_phev.unique()):
cum_count[i] = sum(dop_phev<date)
plt.plot(dop_phev.unique(),cum_count)
这不太有效...
作为参考,我正在研究this dataset电动汽车的回扣。您可以在我的GitHub存储库here上找到数据的CSV。
最佳答案
您可以使用Series.groupby
,然后使用Series.plot
:
dop_phev = dop_phev.groupby(dop_phev).apply(lambda x: sum(dop_phev<x.name))
print (dop_phev)
2015-07-20 0
2015-07-24 3
2017-06-14 5
2017-09-16 6
2017-09-18 7
2017-09-21 8
2017-09-22 9
Name: Date_of_Purchase, dtype: int64
dop_phev.plot()