我正在尝试对几个点使用拉格朗日插值。因此,我需要 matematical 公式,例如:

Lx=[1,2,3],
Ly=[1,4,9],
result = x^2

而不是这个我得到 "-4.0*X*(-0.5*X - 1.0)*(-0.2*X + 0.2)*(-0.142857142857143*X +..."
例如,当我用 5 代替 X(第 12 行)时,我得到“25”,正确答案。
有谁能够帮我?
import sympy
def Lagrange (Lx, Ly):
    X=sympy.symbols('X')
    if  len(Lx)!= len(Ly):
        print "ERROR"
        return 1
    y=float(0.0)
    for k in range ( len(Lx) ):
        t=float(1.0)
        for j in range ( len(Lx) ):
            if j != k:
                t=t* ( (X-Lx[j]) / float(Lx[k]-Lx[j]) ) # when I put number, OK
        y+= t*Ly[k]
    return y

Lx=[-4,-2,0,1,3]
Ly=[16,4,0,1,9]
print Lagrange(Lx,Ly)

最佳答案

这可能是由于浮点四舍五入。简化给出:

In [10]: sympy.simplify(Lagrange(Lx,Ly))
Out[10]: X*(1.85037170770859e-17*X**2 + 1.0*X - 1.11022302462516e-16)

这基本上是 X**2 。尝试摆脱那些 float 强制转换:
def Lagrange (Lx, Ly):
    X=sympy.symbols('X')
    if  len(Lx)!= len(Ly):
        print "ERROR"
        return 1
    y=0
    for k in range ( len(Lx) ):
        t=1
        for j in range ( len(Lx) ):
            if j != k:
                t=t* ( (X-Lx[j]) /(Lx[k]-Lx[j]) )
        y+= t*Ly[k]
    return y

给我:
In [30]: Lx=[-4,-2,0,1,3]
In [31]: Ly=[16,4,0,1,9.]
In [32]: print Lagrange(Lx,Ly)
Out[32]: 1.0*X**2

10-06 09:29