因此,这是我程序的一部分,我对两个类进行了总和减少。我用共享数组__shared__ int nrules[max_threads * MAX_CLASSES];的一半索引了这些类,因此第一个类从nrules[0]开始,第二个类从nrules[blockDim.x or max_threads]开始。两半都减少。总和保存在作为参数传递的全局数组中,该数组将保留每个块的总和,因此由blockIdx.x进行索引。

我有一个用MAX_SIZE表示的测试用例的大小,并且所有测试首先从1到MAX_SIZE处理,并且总和在每个块的全局数组中累积。

我想调用一个内核,该内核的块数等于我的测试数(10000),但是总和有一些问题,所以我改为逐步进行。

我找不到解决方案,但是每当我调用一个具有max_threads个以上块数的内核时,它就会开始对初始块中的东西求和。如果执行代码,您将看到它将打印每个块的值,在这种情况下,每个块将打印64个线程。如果我再执行至少1个块,则其总和将改为128。好像偏移量变量什么也不做,而写入又在第一个块处发生。在MAX_SIZE = 3的情况下,第一个块的第二个类总和更改为192。
 这里的Cuda功能是2.0,一张GT 520卡。与CUDA 6.5一起编译。

#include <stdio.h>
#include <cuda.h>
#include <cuda_runtime.h>

#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort = true)
{
    if (code != cudaSuccess)
    {
        fprintf(stderr, "GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);

    }
}

#define MAX_CLASSES 2
#define max_threads 64
//#define MAX_FEATURES 65

__device__ __constant__ int d_MAX_SIZE;
__device__  __constant__ int offset;

__device__ void rules_points_reduction(float points[max_threads * MAX_CLASSES], int nrules[max_threads * MAX_CLASSES]){

    float psum[MAX_CLASSES];
    int nsum[MAX_CLASSES];

    for (int i = 0; i < MAX_CLASSES; i++){
        psum[i] = points[threadIdx.x + i * blockDim.x];
        nsum[i] = nrules[threadIdx.x + i * blockDim.x];
    }

    __syncthreads();

    if (blockDim.x >= 1024) {
        if (threadIdx.x < 512) {
            for (int i = 0; i < MAX_CLASSES; i++){
                points[threadIdx.x + i * blockDim.x] = psum[i] = psum[i] + points[threadIdx.x + 512 + i * blockDim.x];
                nrules[threadIdx.x + i * blockDim.x] = nsum[i] = nsum[i] + nrules[threadIdx.x + 512 + i * blockDim.x];
            }

        } __syncthreads();
    }
    if (blockDim.x >= 512) {
        if (threadIdx.x < 256) {
            for (int i = 0; i < MAX_CLASSES; i++){
                points[threadIdx.x + i * blockDim.x] = psum[i] = psum[i] + points[threadIdx.x + 256 + i * blockDim.x];
                nrules[threadIdx.x + i * blockDim.x] = nsum[i] = nsum[i] + nrules[threadIdx.x + 256 + i * blockDim.x];
            }
        } __syncthreads();
    }
    if (blockDim.x >= 256) {
        if (threadIdx.x < 128) {
            for (int i = 0; i < MAX_CLASSES; i++){
                points[threadIdx.x + i * blockDim.x] = psum[i] = psum[i] + points[threadIdx.x + 128 + i * blockDim.x];
                nrules[threadIdx.x + i * blockDim.x] = nsum[i] = nsum[i] + nrules[threadIdx.x + 128 + i * blockDim.x];
            }
        } __syncthreads();
    }
    if (blockDim.x >= 128) {
        if (threadIdx.x <  64) {
            for (int i = 0; i < MAX_CLASSES; i++){
                points[threadIdx.x + i * blockDim.x] = psum[i] = psum[i] + points[threadIdx.x + 64 + i * blockDim.x];
                nrules[threadIdx.x + i * blockDim.x] = nsum[i] = nsum[i] + nrules[threadIdx.x + 64 + i * blockDim.x];
            }
        } __syncthreads();
    }

    if (threadIdx.x < 32)
    {
        // now that we are using warp-synchronous programming (below)
        // we need to declare our shared memory volatile so that the compiler
        // doesn't reorder stores to it and induce incorrect behavior.
        //volatile int* smem = nrules;
        //volatile float* smemf = points;
        if (blockDim.x >= 64) {
            for (int i = 0; i < MAX_CLASSES; i++){
                points[threadIdx.x + i * blockDim.x] = psum[i] = psum[i] + points[threadIdx.x + 32 + i * blockDim.x];
                nrules[threadIdx.x + i * blockDim.x] = nsum[i] = nsum[i] + nrules[threadIdx.x + 32 + i * blockDim.x];
            }
        }
        if (blockDim.x >= 32) {
            for (int i = 0; i < MAX_CLASSES; i++){
                points[threadIdx.x + i * blockDim.x] = psum[i] = psum[i] + points[threadIdx.x + 16 + i * blockDim.x];
                nrules[threadIdx.x + i * blockDim.x] = nsum[i] = nsum[i] + nrules[threadIdx.x + 16 + i * blockDim.x];
            }
        }
        if (blockDim.x >= 16) {
            for (int i = 0; i < MAX_CLASSES; i++){
                points[threadIdx.x + i * blockDim.x] = psum[i] = psum[i] + points[threadIdx.x + 8 + i * blockDim.x];
                nrules[threadIdx.x + i * blockDim.x] = nsum[i] = nsum[i] + nrules[threadIdx.x + 8 + i * blockDim.x];
            }
        }
        if (blockDim.x >= 8) {
            for (int i = 0; i < MAX_CLASSES; i++){
                points[threadIdx.x + i * blockDim.x] = psum[i] = psum[i] + points[threadIdx.x + 4 + i * blockDim.x];
                nrules[threadIdx.x + i * blockDim.x] = nsum[i] = nsum[i] + nrules[threadIdx.x + 4 + i * blockDim.x];
            }
        }
        if (blockDim.x >= 4) {
            for (int i = 0; i < MAX_CLASSES; i++){
                points[threadIdx.x + i * blockDim.x] = psum[i] = psum[i] + points[threadIdx.x + 2 + i * blockDim.x];
                nrules[threadIdx.x + i * blockDim.x] = nsum[i] = nsum[i] + nrules[threadIdx.x + 2 + i * blockDim.x];
            }
        }
        if (blockDim.x >= 2) {
            for (int i = 0; i < MAX_CLASSES; i++){
                points[threadIdx.x + i * blockDim.x] = psum[i] = psum[i] + points[threadIdx.x + 1 + i * blockDim.x];
                nrules[threadIdx.x + i * blockDim.x] = nsum[i] = nsum[i] + nrules[threadIdx.x + 1 + i * blockDim.x];
            }
        }
    }

}

__device__ void d_get_THE_prediction(short k, float* finalpoints, int* gn_rules)
{
    int max;
    short true_label, n_items;

    __shared__ float points[max_threads * MAX_CLASSES];
    __shared__ int nrules[max_threads * MAX_CLASSES];
    //__shared__ short  items[MAX_FEATURES], ele[MAX_FEATURES];
    __shared__ int max2;

    for (int i = 0; i < MAX_CLASSES; i++)
    {
        points[threadIdx.x + i * blockDim.x] = 1;
        nrules[threadIdx.x + i * blockDim.x] = 1;
    }

    if (threadIdx.x == 0) {
        if (k == 1){
            nrules[0] = 1;
            nrules[blockDim.x] = 1;
        }
        //max2 = GetBinCoeff_l_d(n_items, k);
    }
    __syncthreads();

    //max = max2;

    //d_induce_rules(items, ele, n_items, k, max, nrules, points);

    __syncthreads();

    rules_points_reduction(points, nrules);

    if (threadIdx.x == 0){

        for (int i = 0; i < MAX_CLASSES; i++){
            gn_rules[(blockIdx.x + offset) + i * blockDim.x] += nrules[i * blockDim.x];
            finalpoints[(blockIdx.x + offset) + i * blockDim.x] += points[i * blockDim.x];

        }
        printf("block %d k%d %f %f %d %d\n", (blockIdx.x + offset), k, finalpoints[(blockIdx.x + offset)],
            finalpoints[(blockIdx.x + offset) + blockDim.x], gn_rules[(blockIdx.x + offset)], gn_rules[(blockIdx.x + offset) + blockDim.x]);

    }
}

__global__ void lazy_supervised_classification_kernel(int k, float* finalpoints, int* n_rules){

    d_get_THE_prediction( k, finalpoints, n_rules);

}


int main() {
    //freopen("output.txt", "w", stdout);

    int N_TESTS = 10000;
    int MAX_SIZE = 3;

    float *finalpoints = (float*)calloc(MAX_CLASSES * N_TESTS, sizeof(float));
    float *d_finalpoints = 0;

    int *d_nruls = 0;
    int *nruls = (int*)calloc(MAX_CLASSES * N_TESTS, sizeof(int));

    gpuErrchk(cudaMalloc(&d_finalpoints, MAX_CLASSES * N_TESTS * sizeof(float)));
    gpuErrchk(cudaMemset(d_finalpoints, 0, MAX_CLASSES * N_TESTS * sizeof(float)));

    gpuErrchk(cudaMalloc(&d_nruls, MAX_CLASSES * N_TESTS * sizeof(int)));
    gpuErrchk(cudaMemset(d_nruls, 0, MAX_CLASSES * N_TESTS * sizeof(int)));

    gpuErrchk(cudaMemcpyToSymbol(d_MAX_SIZE, &MAX_SIZE, sizeof(int), 0, cudaMemcpyHostToDevice));

    int step = max_threads, ofset = 0;

    for (int k = 1; k < MAX_SIZE; k++){

                               //N_TESTS-step
        for (ofset = 0; ofset < max_threads; ofset += step){

            gpuErrchk(cudaMemcpyToSymbol(offset, &ofset, sizeof(int), 0, cudaMemcpyHostToDevice));
            lazy_supervised_classification_kernel <<<step, max_threads >>>(k, d_finalpoints, d_nruls);
            gpuErrchk(cudaDeviceSynchronize());
        }

        gpuErrchk(cudaMemcpyToSymbol(offset, &ofset, sizeof(int), 0, cudaMemcpyHostToDevice));//comment these lines
                                          //N_TESTS - step
        lazy_supervised_classification_kernel <<<3, max_threads >> >(k, d_finalpoints, d_nruls);//
        gpuErrchk(cudaDeviceSynchronize());//

    }
    gpuErrchk(cudaFree(d_finalpoints));
    gpuErrchk(cudaFree(d_nruls));
    free(finalpoints);
    free(nruls);

    gpuErrchk(cudaDeviceReset());
    return(0);
}

最佳答案

我不认为此索引是您想要的:

 gn_rules[(blockIdx.x + offset) + i * blockDim.x] += ...;
 finalpoints[(blockIdx.x + offset) + i * blockDim.x] += ...;


对于MAX_CLASSES = 2,每个块需要存储2个finalpoints值和2个gn_rules值。因此,当offset为非零值时,需要按MAX_CLASSES值对其进行缩放,以便为该块的正确存储位置建立索引。

因此,如果将以上代码行更改为:

 gn_rules[(blockIdx.x + (offset*MAX_CLASSES)) + i * blockDim.x] += nrules[i * blockDim.x];
 finalpoints[(blockIdx.x + (offset*MAX_CLASSES)) + i * blockDim.x] += points[i * blockDim.x];


我相信您将获得期望的输出。

10-06 06:54