在原始的Caffe框架中,在caffe/build/tools
下有一个名为convert_imageset
的可执行文件,该文件包含一个JPEG图像目录和一个带有每个图像标签的文本文件,并输出一个LMDB,可将其输入Caffe模型进行训练,测试等。
使用Caffe2网站上的MNIST tutorial中的AddInput()
函数将原始JPEG图像和标签转换为Caffe2可以摄取的LMDB的最佳方法是什么?
根据我的研究,您不能简单地使用此工具创建LMDB文件并提供Caffe2模型。
教程脚本仅下载两个LMDB(mnist-train-nchw-lmdb
和mnist-test-nchw-lmdb
)并将它们传递给AddInput()
,但没有提供有关LMDB如何创建的见解。
最佳答案
有一个名为make_image_db.cc
的二进制文件,它可以精确地执行您所描述的内容。它位于caffe2/build/bin/make_image_db
中:
// This script converts an image dataset to a database.
//
// caffe2::FLAGS_input_folder is the root folder that holds all the images
//
// caffe2::FLAGS_list_file is the path to a file containing a list of files
// and their labels, as follows:
//
// subfolder1/file1.JPEG 7
// subfolder1/file2.JPEG 7
// subfolder2/file1.JPEG 8
// ...
如https://github.com/caffe2/caffe2/issues/1755中所述,您可以通过以下方式使用二进制文件(也可以使用较少的参数):
caffe2/build/bin/make_image_db -color -db lmdb -input_folder ./some_input_folder
-list_file ./labels_file -num_threads 10 -output_db_name ./some_output_folder -raw -scale 256 -shuffle
有关如何创建和读取lmdb数据库(用于随机图像)的完整Caffe2示例,可以在官方github存储库中找到,并且可以用作适应您自己的图像https://github.com/caffe2/caffe2/blob/master/caffe2/python/examples/lmdb_create_example.py的框架。由于尚未使用此方法,因此我将简单复制该示例。为了创建数据库,可以使用:
import argparse
import numpy as np
import lmdb
from caffe2.proto import caffe2_pb2
from caffe2.python import workspace, model_helper
def create_db(output_file):
print(">>> Write database...")
LMDB_MAP_SIZE = 1 << 40 # MODIFY
env = lmdb.open(output_file, map_size=LMDB_MAP_SIZE)
checksum = 0
with env.begin(write=True) as txn:
for j in range(0, 128):
# MODIFY: add your own data reader / creator
label = j % 10
width = 64
height = 32
img_data = np.random.rand(3, width, height)
# ...
# Create TensorProtos
tensor_protos = caffe2_pb2.TensorProtos()
img_tensor = tensor_protos.protos.add()
img_tensor.dims.extend(img_data.shape)
img_tensor.data_type = 1
flatten_img = img_data.reshape(np.prod(img_data.shape))
img_tensor.float_data.extend(flatten_img)
label_tensor = tensor_protos.protos.add()
label_tensor.data_type = 2
label_tensor.int32_data.append(label)
txn.put(
'{}'.format(j).encode('ascii'),
tensor_protos.SerializeToString()
)
checksum += np.sum(img_data) * label
if (j % 16 == 0):
print("Inserted {} rows".format(j))
print("Checksum/write: {}".format(int(checksum)))
return checksum
然后可以通过以下方式加载数据库:
def read_db_with_caffe2(db_file, expected_checksum):
print(">>> Read database...")
model = model_helper.ModelHelper(name="lmdbtest")
batch_size = 32
data, label = model.TensorProtosDBInput(
[], ["data", "label"], batch_size=batch_size,
db=db_file, db_type="lmdb")
checksum = 0
workspace.RunNetOnce(model.param_init_net)
workspace.CreateNet(model.net)
for _ in range(0, 4):
workspace.RunNet(model.net.Proto().name)
img_datas = workspace.FetchBlob("data")
labels = workspace.FetchBlob("label")
for j in range(batch_size):
checksum += np.sum(img_datas[j, :]) * labels[j]
print("Checksum/read: {}".format(int(checksum)))
assert np.abs(expected_checksum - checksum < 0.1), \
"Read/write checksums dont match"
最后但并非最不重要的一点,还有一个有关如何创建minidb数据库的教程:https://github.com/caffe2/caffe2/blob/master/caffe2/python/tutorials/create_your_own_dataset.ipynb。为此,可以使用以下功能:
def write_db(db_type, db_name, features, labels):
db = core.C.create_db(db_type, db_name, core.C.Mode.write)
transaction = db.new_transaction()
for i in range(features.shape[0]):
feature_and_label = caffe2_pb2.TensorProtos()
feature_and_label.protos.extend([
utils.NumpyArrayToCaffe2Tensor(features[i]),
utils.NumpyArrayToCaffe2Tensor(labels[i])])
transaction.put(
'train_%03d'.format(i),
feature_and_label.SerializeToString())
# Close the transaction, and then close the db.
del transaction
del db
特征将是一个张量,包含您的图像作为numpy数组。标签是要素的相应真实标签。然后,您只需将函数调用为
write_db("minidb", "train_images.minidb", train_features, train_labels)
最后,您可以通过以下方式从数据库加载图像:
net_proto = core.Net("example_reader")
dbreader = net_proto.CreateDB([], "dbreader", db="train_images.minidb", db_type="minidb")
net_proto.TensorProtosDBInput([dbreader], ["X", "Y"], batch_size=16)
关于python - 为Caffe2创建镜像LMDB,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/48287080/