我想使用Unity进行类似于MATLAB的数学运算,而且还希望在化学,物理学和工程学领域使用科学类型的东西。
只是想问一下这些函数对于数字计算导数和偏导数是否正确,以及如何像在薛定2方程,热方程等公式中那样进行二阶偏导和Laplace运算符?
我仍在学习微分方程,但想将其与C#中的数值计算联系起来进行计算。
public double Derivative(Func<double, double> function, double x, double h)
{
return (function(x + h) - function(x)) / h;
}
public double SecondDerivative(Func<double, double> function, double x, double h)
{
return (function(x + h) - 2 * function(x) + function(x - h)) / (h * h);
}
public double ThirdDerivative(Func<double, double> function, double x, double h)
{
return (function(x + 3 * h) - 3 * function(x + 2 * h) + 3 * function(x + h) - function(x)) / (h * h * h);
}
public double PartialDerivativeX(Func<double, double, double> function, double x, double y, double h)
{
return (function(x + h, y) - function(x, y)) / h;
}
public double PartialDerivativeY(Func<double, double, double> function, double x, double y, double h)
{
return (function(x, y + h) - function(x, y)) / h;
}
最佳答案
您的实现是一个很好的近似值(因为导数是一个极限,而h
是一个有限值)。但是,我建议使用一些不同的代码:
public static class MyMath {
// static: we don't want "this"
// Func<double, double> return value: derivative is a function, not a value.
// If we want a point - double - let's name the method as DerivativeAt
// No h - we can't provide correct h for all possible x
public static Func<double, double> Derivative(Func<double, double> function) {
//DONE: Validate public methods arguments
if (null == function)
throw new ArgumentNullException("function");
return new Func<double, double>((x) => {
// Let's compute h for given x
// Easiest, but not the best
double h = Math.Abs(x) < 1e-10 ? 1e-16 : x / 1.0e6;
// "Central" derivative is often a better choice then right one ((f(x + h) - f(x))/h)
return (function(x + h) - function(x - h)) / (2.0 * h);
});
}
// h = 0.0: be nice and let user has no idea what step is reasonable
public static double DerivativeAt(Func<double, double> function,
double x,
double h = 0.0) {
//DONE: Validate public methods arguments
if (null == function)
throw new ArgumentNullException("function");
// If user don't want to provide h, let's compute it
if (0 == h)
h = Math.Abs(x) < 1e-10 ? 1e-16 : x / 1.0e6; // Easiest, but not the best
// "Central" derivative is often a better choice then right one ((f(x + h) - f(x))/h)
return (function(x + h) - function(x - h)) / (2.0 * h);
}
}
如果您经常使用
Derivative
,则可以尝试将其声明为扩展方法:public static Func<double, double> Derivative(this Func<double, double> function) {...}
public static double DerivativeAt(this Func<double, double> function,
double x,
double h = 0.0) { ... }
演示:让我们找出
x
函数的[0 .. 2 * PI)
范围在Sin
时的最大错误// We don't want to repeat pesky "MyMath" in "MyMath.Derivative"
using static MyNamespace.MyMath;
...
// Derivative of Sin (expected to be Cos)
var d_sin = Derivative(x => Math.Sin(x));
double maxError = Enumerable
.Range(0, 1000)
.Select(i => 2.0 * Math.PI * i / 1000.0)
.Select(x => Math.Abs(d_sin(x) - Math.Cos(x))) // d(sin(x)) / dx == cos(x)
.Max();
Console.WriteLine(maxError);
结果:
1.64271596325705E-10
编辑:“中央”派生。
众所周知,导数是一个极限
df/dx == lim (f(x + h) - f(x)) / h
h -> 0
但是我们可以问:
h
趋向于0
的趋势。在有复数的情况下,我们有很多方法(例如h
可以螺旋下降到0
或沿着海峡线);对于实数,h
可以为正(右半导数)或负(左半导数)。通常(标准清晰度),我们要求左半导数等于右半导数才能具有导数:d+f(x) == d-f(x) == df/dx
但是,有时我们使用宽大的定义(“中心”派生):
df/dx == (d+f(x) + d-f(x)) / 2
例如,在
d(abs(x))/dx
处的x = 0
d-abs(x) = -1
d+abs(x) = 1
d abs(x) / dx doesn't exist (standard definition)
d abs(x) / dx = 0 "central", lenient definition.
请注意,您当前的代码实际上计算的是右半导数;如果是
Abs(x)
,您会得到错误的1
。如果不是在微积分中,而是在工程学中(想象有速度的运动汽车),0
在上下文中是一个更好的答案。另一个问题是,在x
处计算导数时,我们不需要在f
处存在x
。例如f(x) = x / abs(x) which can be put as
-1 when x < 0
f(x) = doesn't exist when x = 0
+1 when x > 0
请注意,在
df/dx
处的导数x = 0
存在(它是正无穷大)。这就是为什么在计算导数时应避免计算f(x)
的原因。您当前的代码将返回 (h / h + 0 / 0) / h == (1 + NaN) / h == NaN
double.NaN
-导数不存在(那是错误的); “中央”衍生产品将返回 (h/h - -h/h) / (2 * h) == 1 / h == some huge number (approximation of +Inf)