这就是我的数据框的样子。最右边的两列是我想要的列。这两列将检查条件,在过去21天内是否存在“电子邮件” ActivityType,以及在过去21天内是否存在“网络研讨会” ActivityType。
Name ActivityType ActivityDate Email(last21days) Webinar(last21day)**
John Email 1/1/2014 TRUE NA
John Webinar 1/5/2014 TRUE TRUE
John Sale 1/20/2014 TRUE TRUE
John Webinar 3/25/2014 NA TRUE
John Sale 4/1/2014 NA TRUE
John Sale 7/1/2014 NA NA
Tom Email 1/1/2015 TRUE NA
Tom Webinar 1/5/2015 TRUE TRUE
Tom Sale 1/20/2015 TRUE TRUE
Tom Webinar 3/25/2015 NA TRUE
Tom Sale 4/1/2015 NA TRUE
Tom Sale 7/1/2015 NA NA
基于此处的帮助:
Extracting event types from last 21 day window
我试过了:
df$ActivityDate <- as.Date(df$ActivityDate)
library(data.table)
setDT(df)
setkey(df, Name,ActivityDate)
Elsetemp <- df[, .(Name, ActivityDate, ActivityType)]
df[Elsetemp, `:=`(Email21 = as.logical(which(i.ActivityType == "Email")),
Webinar21 = as.logical(which(i.ActivityType == "Webinar"))),
roll = -21, by = .EACHI]
无济于事,因为我只为带有“销售”的行获取
TRUE
。例如,第二行,其中ActivityType =网络研讨会,Email21和Webinar21都应说TRUE。当我定义过去21天时,我试图包括事件发生的那一天。 最佳答案
这个怎么样?
使用来自data.table
的滚动联接:
require(data.table)
dt[, ActivityDate := as.Date(ActivityDate, format="%m/%d/%Y")]
setkey(dt, Name, ActivityDate)
roll_index <- function(x, types, roll=21) {
lapply(types, function(type) {
idx = x[ActivityType == type][x, roll=roll, which=TRUE]
as.logical(idx)
})
}
dt[, c("Email_21", "Webinar_21") := roll_index(dt, c("Email", "Webinar"))]
# Name ActivityType ActivityDate Email_21 Webinar_21
# 1: John Email 2014-01-01 TRUE NA
# 2: John Webinar 2014-01-05 TRUE TRUE
# 3: John Sale 2014-01-20 TRUE TRUE
# 4: John Webinar 2014-03-25 NA TRUE
# 5: John Sale 2014-04-01 NA TRUE
# 6: John Sale 2014-07-01 NA NA
# 7: Tom Email 2015-01-01 TRUE NA
# 8: Tom Webinar 2015-01-05 TRUE TRUE
# 9: Tom Sale 2015-01-20 TRUE TRUE
# 10: Tom Webinar 2015-03-25 NA TRUE
# 11: Tom Sale 2015-04-01 NA TRUE
# 12: Tom Sale 2015-07-01 NA NA