这是我正在使用的数据框的示例:
d = {
'item_number':['bdsm1000', 'bdsm1000', 'bdsm1000', 'ZZRWB18','ZZRWB18', 'ZZRWB18', 'ZZRWB18', 'ZZHP1427BLK', 'ZZHP1427', 'ZZHP1427', 'ZZHP1427', 'ZZHP1427', 'ZZHP1427', 'ZZHP1427', 'ZZHP1427', 'ZZHP1427', 'ZZHP1427', 'ZZHP1427', 'ZZHP1427', 'ZZHP1427', 'ZZHP1414', 'ZZHP1414', 'ZZHP1414', 'WRM115WNTR', 'WRM115WNTR', 'WRM115WNTR', 'WRM115WNTR', 'WRM115WNTR', 'WRM115WNTR', 'WRM115WNTR', 'WRM115WNTR', 'WRM115WNTR', 'WRM115WNTR', 'WRM115WNTR', 'WRM115WNTR', 'WRM115WNTR', 'WRM115SCFRE', 'WRM115SCFRE', 'WRM115SCFRE', 'WRM115SCFRE', 'WRM115SCFRE', 'WRM115SCFRE', 'WRM115SCFRE', 'WRM115SCFRE', 'WRM115SCFRE', 'WRM115SCFRE', 'WRM115SCFRE', 'WRM115SCFRE', 'WRM115SCFRE', 'WRM115SCFRE'],
'Comp_ID':[2454, 2454, 2454, 1395, 1395, 1395, 1395, 3378, 1266941, 660867, 43978, 1266941, 660867, 43978, 1266941, 660867, 43978, 1266941, 660867, 43978, 43978, 43978, 43978, 1197347907, 70745, 4737, 1197347907, 4737, 1197347907, 70745, 4737, 1197347907, 70745, 4737, 1197347907, 4737, 1197487704, 1197347907, 70745, 23872, 4737, 1197347907, 4737, 1197487704, 1197347907, 23872, 4737, 1197487704, 1197347907, 70745],
'date':['2016-11-22', '2016-11-20', '2016-11-19', '2016-11-22', '2016-11-20', '2016-11-19', '2016-11-18', '2016-11-22', '2016-11-22', '2016-11-22', '2016-11-22', '2016-11-20', '2016-11-20', '2016-11-20', '2016-11-19', '2016-11-19', '2016-11-19', '2016-11-18', '2016-11-18', '2016-11-18', '2016-11-22', '2016-11-20', '2016-11-19', '2016-11-22', '2016-11-22', '2016-11-22', '2016-11-21', '2016-11-21', '2016-11-20', '2016-11-20', '2016-11-20', '2016-11-19', '2016-11-19', '2016-11-19', '2016-11-18', '2016-11-18', '2016-11-22', '2016-11-22', '2016-11-22', '2016-11-22', '2016-11-22', '2016-11-21', '2016-11-21', '2016-11-20', '2016-11-20', '2016-11-20', '2016-11-20', '2016-11-19', '2016-11-19', '2016-11-19']}
df = pd.DataFrame(data=d)
df.date = pd.to_datetime(df.date)
我想计算从2016-11-22开始的连续观察,这些观察是按Comp_ID和item_number分组的。
本质上,我想做的是计算每个Comp_ID和item_number从今天的日期算起的连续观察天数。 (此示例在11月22日汇总在一起)。与今天前几周/天观察到的连续观测值无关。仅像今天……昨天……前天……这样的序列是相关的。
我将其用于较小的样本,但似乎在较大的数据集上被绊倒了。
这是较小样本的代码。我需要找到包含数千个卖家/物品的观测值的连续日期。由于某种原因,以下代码不适用于较大的数据集。
d = {'item_number':['KIN005','KIN005','KIN005','KIN005','KIN005','A789B','A789B','A789B','G123H','G123H','G123H'],
'Comp_ID':['1395','1395','1395','1395','1395','7787','7787','7787','1395','1395','1395'],
'date':['2016-11-22','2016-11-21','2016-11-20','2016-11-14','2016-11-13','2016-11-22','2016-11-21','2016-11-12','2016-11-22','2016-11-21','2016-11-08']}
df = pd.DataFrame(data=d)
df.date = pd.to_datetime(df.date)
d = pd.Timedelta(1, 'D')
df = df.sort_values(['item_number','date','Comp_ID'],ascending=False)
g = df.groupby(['Comp_ID','item_number'])
sequence = g['date'].apply(lambda x: x.diff().fillna(0).abs().le(d)).reset_index()
sequence.set_index('index',inplace=True)
test = df.join(sequence)
test.columns = ['Comp_ID','date','item_number','consecutive']
g = test.groupby(['Comp_ID','item_number'])
g['consecutive'].apply(lambda x: x.idxmin() - x.idxmax() )
对于较小的数据集,这将获得期望的结果:
Comp_ID item_number
1395 G123H 2
KIN005 3
7787 KIN005 2
Name: consecutive, dtype: int64
最佳答案
您可以这样进行:
today = pd.to_datetime('2016-11-22')
# sort DF by `date` (descending)
x = df.sort_values('date', ascending=0)
g = x.groupby(['Comp_ID','item_number'])
# compare the # of days to `today` with a consecutive day# in each group
x[(today - x['date']).dt.days == g.cumcount()].groupby(['Comp_ID','item_number']).size()
结果:
Comp_ID item_number
1395 G123H 2
KIN005 3
7787 A789B 2
dtype: int64
PS感谢@DataSwede's for faster
diff
calculation!解释:
In [124]: x[(today - x['date']).dt.days == g.cumcount()] \
.sort_values(['Comp_ID','item_number','date'], ascending=[1,1,0])
Out[124]:
Comp_ID date item_number
8 1395 2016-11-22 G123H
9 1395 2016-11-21 G123H
0 1395 2016-11-22 KIN005
1 1395 2016-11-21 KIN005
2 1395 2016-11-20 KIN005
5 7787 2016-11-22 A789B
6 7787 2016-11-21 A789B