我正在搜索 John Tukey 算法,该算法在我的线性回归中使用 R 计算“阻力线”或“中值线”。

邮件列表上的学生用以下术语解释此算法:



关于 John tukey 好奇的中位数的文章:http://www.johndcook.com/blog/2009/06/23/tukey-median-ninther/

你知道我在哪里可以找到这个算法或 R 函数吗?在哪些包中,
非常感谢 !

最佳答案

有关于如何计算中值线 here 的描述。一个 R 实现是

median_median_line <- function(x, y, data)
{
  if(!missing(data))
  {
    x <- eval(substitute(x), data)
    y <- eval(substitute(y), data)
  }

  stopifnot(length(x) == length(y))

  #Step 1
  one_third_length <- floor(length(x) / 3)
  groups <- rep(1:3, times = switch((length(x) %% 3) + 1,
     one_third_length,
     c(one_third_length, one_third_length + 1, one_third_length),
     c(one_third_length + 1, one_third_length, one_third_length + 1)
  ))

  #Step 2
  x <- sort(x)
  y <- sort(y)

  #Step 3
  median_x <- tapply(x, groups, median)
  median_y <- tapply(y, groups, median)

  #Step 4
  slope <- (median_y[3] - median_y[1]) / (median_x[3] - median_x[1])
  intercept <- median_y[1] - slope * median_x[1]

  #Step 5
  middle_prediction <- intercept + slope * median_x[2]
  intercept <- intercept + (median_y[2] - middle_prediction) / 3
  c(intercept = unname(intercept), slope = unname(slope))
}

为了测试它,这是该页面的第二个示例:
dfr <- data.frame(
  time = c(.16, .24, .25, .30, .30, .32, .36, .36, .50, .50, .57, .61, .61, .68, .72, .72, .83, .88, .89),
  distance = c(12.1, 29.8, 32.7, 42.8, 44.2, 55.8, 63.5, 65.1, 124.6, 129.7, 150.2, 182.2, 189.4, 220.4, 250.4, 261.0, 334.5, 375.5, 399.1))

median_median_line(time, distance, dfr)
#intercept     slope
#   -113.6     520.0

请注意指定组的方式有点奇怪。说明对如何定义组大小非常挑剔,因此更明显的 cut(x, quantile(x, seq.int(0, 1, 1/3))) 方法不起作用。

10-06 01:34