在生成带有reactive kafka和avro4s的Avro消息时,出现了可重现的错误。一旦达到客户端的identityMapCapacity
(CachedSchemaRegistryClient
),序列化将失败并显示
java.lang.IllegalStateException: Too many schema objects created for <myTopic>-value
这是意外的,因为所有消息都应具有相同的架构-它们是相同case类的序列化。
val avroProducerSettings: ProducerSettings[String, GenericRecord] =
ProducerSettings(system, Serdes.String().serializer(),
avroSerde.serializer())
.withBootstrapServers(settings.bootstrapServer)
val avroProdFlow: Flow[ProducerMessage.Message[String, GenericRecord, String],
ProducerMessage.Result[String, GenericRecord, String],
NotUsed] = Producer.flow(avroProducerSettings)
val avroQueue: SourceQueueWithComplete[Message[String, GenericRecord, String]] =
Source.queue(bufferSize, overflowStrategy)
.via(avroProdFlow)
.map(logResult)
.to(Sink.ignore)
.run()
...
queue.offer(msg)
序列化器是一个
KafkaAvroSerializer
,用new CachedSchemaRegistryClient(settings.schemaRegistry, 1000)
实例化生成
GenericRecord
:def toAvro[A](a: A)(implicit recordFormat: RecordFormat[A]): GenericRecord =
recordFormat.to(a)
val makeEdgeMessage: (Edge, String) => Message[String, GenericRecord, String] = { (edge, topic) =>
val edgeAvro: GenericRecord = toAvro(edge)
val record = new ProducerRecord[String, GenericRecord](topic, edge.id, edgeAvro)
ProducerMessage.Message(record, edge.id)
}
该模式是在代码(
io.confluent.kafka.serializers.AbstractKafkaAvroSerDe#getSchema
,由io.confluent.kafka.serializers.AbstractKafkaAvroSerializer#serializeImpl
调用)的深处创建的,对此我没有任何影响,因此我不知道如何解决泄漏。在我看来,这两个融合的项目不能很好地协同工作。我发现here,here和here的问题似乎无法解决我的用例。
对我来说,目前有两种解决方法:
SchemaRegistryClient
-可行,但我想避免产生比重新实现有没有一种方法可以根据消息/记录类型生成或缓存一致的架构,并在我的设置中使用它?
最佳答案
编辑2017.11.20
在我的情况下,问题是,携带我的消息的GenericRecord
的每个实例都已由包含RecordFormat
的不同实例的Schema
的不同实例进行了序列化。这里的隐式解析每次都会生成一个新实例。def toAvro[A](a: A)(implicit recordFormat: RecordFormat[A]): GenericRecord = recordFormat.to(a)
解决方案是将RecordFormat
实例固定到val
并显式重用。非常感谢https://github.com/heliocentrist的explaining the details。
原始回复:
等待了一会儿(对于github issue也没有答案)之后,我不得不实现自己的SchemaRegistryClient
。超过90%的内容是从原始CachedSchemaRegistryClient
复制而来的,只是被翻译成scala。使用scala mutable.Map
修复了内存泄漏。我尚未进行任何全面的测试,因此使用时需您自担风险。
import java.util
import io.confluent.kafka.schemaregistry.client.rest.entities.{ Config, SchemaString }
import io.confluent.kafka.schemaregistry.client.rest.entities.requests.ConfigUpdateRequest
import io.confluent.kafka.schemaregistry.client.rest.{ RestService, entities }
import io.confluent.kafka.schemaregistry.client.{ SchemaMetadata, SchemaRegistryClient }
import org.apache.avro.Schema
import scala.collection.mutable
class CachingSchemaRegistryClient(val restService: RestService, val identityMapCapacity: Int)
extends SchemaRegistryClient {
val schemaCache: mutable.Map[String, mutable.Map[Schema, Integer]] = mutable.Map()
val idCache: mutable.Map[String, mutable.Map[Integer, Schema]] =
mutable.Map(null.asInstanceOf[String] -> mutable.Map())
val versionCache: mutable.Map[String, mutable.Map[Schema, Integer]] = mutable.Map()
def this(baseUrl: String, identityMapCapacity: Int) {
this(new RestService(baseUrl), identityMapCapacity)
}
def this(baseUrls: util.List[String], identityMapCapacity: Int) {
this(new RestService(baseUrls), identityMapCapacity)
}
def registerAndGetId(subject: String, schema: Schema): Int =
restService.registerSchema(schema.toString, subject)
def getSchemaByIdFromRegistry(id: Int): Schema = {
val restSchema: SchemaString = restService.getId(id)
(new Schema.Parser).parse(restSchema.getSchemaString)
}
def getVersionFromRegistry(subject: String, schema: Schema): Int = {
val response: entities.Schema = restService.lookUpSubjectVersion(schema.toString, subject)
response.getVersion.intValue
}
override def getVersion(subject: String, schema: Schema): Int = synchronized {
val schemaVersionMap: mutable.Map[Schema, Integer] =
versionCache.getOrElseUpdate(subject, mutable.Map())
val version: Integer = schemaVersionMap.getOrElse(
schema, {
if (schemaVersionMap.size >= identityMapCapacity) {
throw new IllegalStateException(s"Too many schema objects created for $subject!")
}
val version = new Integer(getVersionFromRegistry(subject, schema))
schemaVersionMap.put(schema, version)
version
}
)
version.intValue()
}
override def getAllSubjects: util.List[String] = restService.getAllSubjects()
override def getByID(id: Int): Schema = synchronized { getBySubjectAndID(null, id) }
override def getBySubjectAndID(subject: String, id: Int): Schema = synchronized {
val idSchemaMap: mutable.Map[Integer, Schema] = idCache.getOrElseUpdate(subject, mutable.Map())
idSchemaMap.getOrElseUpdate(id, getSchemaByIdFromRegistry(id))
}
override def getSchemaMetadata(subject: String, version: Int): SchemaMetadata = {
val response = restService.getVersion(subject, version)
val id = response.getId.intValue
val schema = response.getSchema
new SchemaMetadata(id, version, schema)
}
override def getLatestSchemaMetadata(subject: String): SchemaMetadata = synchronized {
val response = restService.getLatestVersion(subject)
val id = response.getId.intValue
val version = response.getVersion.intValue
val schema = response.getSchema
new SchemaMetadata(id, version, schema)
}
override def updateCompatibility(subject: String, compatibility: String): String = {
val response: ConfigUpdateRequest = restService.updateCompatibility(compatibility, subject)
response.getCompatibilityLevel
}
override def getCompatibility(subject: String): String = {
val response: Config = restService.getConfig(subject)
response.getCompatibilityLevel
}
override def testCompatibility(subject: String, schema: Schema): Boolean =
restService.testCompatibility(schema.toString(), subject, "latest")
override def register(subject: String, schema: Schema): Int = synchronized {
val schemaIdMap: mutable.Map[Schema, Integer] =
schemaCache.getOrElseUpdate(subject, mutable.Map())
val id = schemaIdMap.getOrElse(
schema, {
if (schemaIdMap.size >= identityMapCapacity)
throw new IllegalStateException(s"Too many schema objects created for $subject!")
val id: Integer = new Integer(registerAndGetId(subject, schema))
schemaIdMap.put(schema, id)
idCache(null).put(id, schema)
id
}
)
id.intValue()
}
}