我有多个要执行相同操作的DataFrame。

首先,我创建一个DataFrames列表。它们都具有称为“结果”的同一列。

df_list = [df1,df2,df3]

我只想在所有DataFrames中保留行值“passed”,所以我在列表上使用了for循环:
for df in df_list:
    df =df[df['result'] == 'passed']

...这不起作用,值不会从每个DataFrame中过滤掉。

如果我分别过滤每一个,那么它确实起作用。
df1 =df1[df1['result'] == 'passed']
df2 =df2[df2['result'] == 'passed']
df3 =df3[df3['result'] == 'passed']

最佳答案

这是因为每次执行类似df[<whatever>]的子集时,您都将返回一个新的数据帧,并将其分配给df循环变量,该变量在您每次进行下一次迭代时都会消失(尽管您保留了最后一个)。这类似于切片列表:

>>> list1 = [1,2,3,4]
>>> list2 = [11,12,13,14]
>>> for lyst in list1,list2:
...   lyst = lyst[1:-1]
...
>>> list1, list2
([1, 2, 3, 4], [11, 12, 13, 14])
>>> lyst
[12, 13]

通常,如果要实际就地修改列表,则需要使用mutator方法。等效地,对于数据框,您可以在索引器上使用分配,例如.loc/.ix/.iloc/等与.dropna方法结合使用时,请小心传递inplace=True参数。假设我有三个数据框,而我只想保留第二列为正的行:

警告:这种方式并不理想,请查看编辑以获得更好的方式
In [11]: df1
Out[11]:
          0         1         2         3
0  0.957288 -0.170286  0.406841 -3.058443
1  1.762343 -1.837631 -0.867520  1.666193
2  0.618665  0.660312 -1.319740 -0.024854
3 -2.008017 -0.445997 -0.028739 -0.227665
4  0.638419 -0.271300 -0.918894  1.524009
5  0.957006  1.181246  0.513298  0.370174
6  0.613378 -0.852546 -1.778761 -1.386848
7 -1.891993 -0.304533 -1.427700  0.099904

In [12]: df2
Out[12]:
          0         1         2         3
0 -0.521018  0.407258 -1.167445 -0.363503
1 -0.879489  0.008560  0.224466 -0.165863
2  0.550845 -0.102224 -0.575909 -0.404770
3 -1.171828 -0.912451 -1.197273  0.719489
4 -0.887862  1.073306  0.351835  0.313953
5 -0.517824 -0.096929 -0.300282  0.716020
6 -1.121527  0.183219  0.938509  0.842882
7  0.003498 -2.241854 -1.146984 -0.751192

In [13]: df3
Out[13]:
          0         1         2         3
0  0.240411  0.795132 -0.305770 -0.332253
1 -1.162097  0.055346  0.094363 -1.254859
2 -0.493466 -0.717872  1.090417 -0.591872
3  1.021246 -0.060453 -0.013952  0.304933
4 -0.859882 -0.947950  0.562609  1.313632
5  0.917199  1.186865  0.354839 -1.771787
6 -0.694799 -0.695505 -1.077890 -0.880563
7  1.088068 -0.893466 -0.188419 -0.451623

In [14]: for df in df1, df2, df3:
   ....:     df.loc[:,:] = df.loc[df[1] > 0,:]
   ....:     df.dropna(inplace = True,axis =0)
   ....:

In [15]: df1
dfOut[15]:
          0         1         2         3
2  0.618665  0.660312 -1.319740 -0.024854
5  0.957006  1.181246  0.513298  0.370174

In [16]: df2
Out[16]:
          0         1         2         3
0 -0.521018  0.407258 -1.167445 -0.363503
1 -0.879489  0.008560  0.224466 -0.165863
4 -0.887862  1.073306  0.351835  0.313953
6 -1.121527  0.183219  0.938509  0.842882

In [17]: df3
Out[17]:
          0         1         2         3
0  0.240411  0.795132 -0.305770 -0.332253
1 -1.162097  0.055346  0.094363 -1.254859
5  0.917199  1.186865  0.354839 -1.771787

编辑添加:

我想我找到了一种更好的方法,仅使用.drop方法。
In [21]: df1
Out[21]:
          0         1         2         3
0 -0.804913 -0.481498  0.076843  1.136567
1 -0.457197 -0.903681 -0.474828  1.289443
2 -0.820710  1.610072  0.175455  0.712052
3  0.715610 -0.178728 -0.664992  1.261465
4 -0.297114 -0.591935  0.487698  0.760450
5  1.035231 -0.108825 -1.058996  0.056320
6  1.579931  0.958331 -0.653261 -0.171245
7  0.685427  1.447411  0.001002  0.241999

In [22]: df2
Out[22]:
          0         1         2         3
0  1.660864  0.110002  0.366881  1.765541
1 -0.627716  1.341457 -0.552313  0.578854
2  0.277738  0.128419 -0.279720 -1.197483
3 -1.294724  1.396698  0.108767  1.353454
4 -0.379995  0.215192  1.446584  0.530020
5  0.557042  0.339192 -0.105808 -0.693267
6  1.293941  0.203973 -3.051011  1.638143
7 -0.909982  1.998656 -0.057350  2.279443

In [23]: df3
Out[23]:
          0         1         2         3
0 -0.002327 -2.054557 -1.752107 -0.911178
1 -0.998328 -1.119856  1.468124 -0.961131
2 -0.048568  0.373192 -0.666330  0.867719
3  0.533597 -1.222963  0.119789 -0.037949
4  1.203075 -0.773511  0.475809  1.352943
5 -0.984069 -0.352267 -0.313516  0.138259
6  0.114596  0.354404  2.119963 -0.452462
7 -1.033029 -0.787237  0.479321 -0.818260


In [25]: for df in df1,df2,df3:
   ....:     df.drop(df.index[df[1] < 0],axis=0,inplace=True)
   ....:

In [26]: df1
Out[26]:
          0         1         2         3
2 -0.820710  1.610072  0.175455  0.712052
6  1.579931  0.958331 -0.653261 -0.171245
7  0.685427  1.447411  0.001002  0.241999

In [27]: df2
Out[27]:
          0         1         2         3
0  1.660864  0.110002  0.366881  1.765541
1 -0.627716  1.341457 -0.552313  0.578854
2  0.277738  0.128419 -0.279720 -1.197483
3 -1.294724  1.396698  0.108767  1.353454
4 -0.379995  0.215192  1.446584  0.530020
5  0.557042  0.339192 -0.105808 -0.693267
6  1.293941  0.203973 -3.051011  1.638143
7 -0.909982  1.998656 -0.057350  2.279443

In [28]: df3
Out[28]:
          0         1         2         3
2 -0.048568  0.373192 -0.666330  0.867719
6  0.114596  0.354404  2.119963 -0.452462

当然更快:
In [8]: timeit.Timer(stmt="df.loc[:,:] = df.loc[df[1] > 0, :];df.dropna(inplace = True,axis =0)", setup="import pandas as pd,numpy as np; df = pd.DataFrame(np.random.random((8,4)))").timeit(10000)
Out[8]: 23.69621358400036

In [9]: timeit.Timer(stmt="df.drop(df.index[df[1] < 0],axis=0,inplace=True)", setup="import pandas as pd,numpy as np; df = pd.DataFrame(np.random.random((8,4)))").timeit(10000)
Out[9]: 11.476448250003159

10-05 22:53
查看更多