#include"pch.h"
#include<opencv2/opencv.hpp>
#include<opencv2/ml/ml.hpp>
using namespace std;
using namespace cv;
using namespace ml;
int main()
{
const int Kwidth = 512;
const int Kheight = 512;
//用于显示分类结果的图像
Mat image = Mat::zeros(Kheight, Kwidth, CV_8UC3);
//组织分类标签,三类,每类50个样本
int labels[150];
for (int i = 0; i < 50; i++)
labels[i] = 1;
for (int i = 50; i < 100; i++)
labels[i] = 2;
for (int i = 100; i < 150; i++)
labels[i] = 3;
Mat labelsMat(150, 1, CV_32SC1, labels); //矩阵化,150*1的矩阵
//组织训练数据,三类数据,每个数据点为二维特征向量
float trainDataArray[150][2];
RNG rng;
for (int i = 0; i < 50; i++)
{
trainDataArray[i][0] = 250 + static_cast<float>(rng.gaussian(30));
trainDataArray[i][1] = 250 + static_cast<float>(rng.gaussian(30));
}
for (int i = 50; i < 100; i++)
{
trainDataArray[i][0] = 150 + static_cast<float>(rng.gaussian(30));
trainDataArray[i][1] = 150 + static_cast<float>(rng.gaussian(30));
}
for (int i = 100; i < 150; i++)
{
trainDataArray[i][0] = 320 + static_cast<float>(rng.gaussian(30));
trainDataArray[i][1] = 150 + static_cast<float>(rng.gaussian(30));
}
Mat trainingDataMat(150, 2, CV_32FC1, trainDataArray); //矩阵化,150*2的矩阵
// 设置训练数据,把特征数据和标签数据放在一起
Ptr<TrainData> tData = TrainData::create(trainingDataMat, ROW_SAMPLE, labelsMat);
//创建分类器,并设置训练参数
Ptr<RTrees> rtrees = RTrees::create();
rtrees->setMaxDepth(10);
rtrees->setMinSampleCount(10);
rtrees->setRegressionAccuracy(0);
rtrees->setUseSurrogates(false);
rtrees->setMaxCategories(15);
rtrees->setPriors(Mat());
rtrees->setCalculateVarImportance(true);
rtrees->setActiveVarCount(4);
rtrees->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER + (0.01f > 0 ? TermCriteria::EPS : 0), 100, 0.01f));
//开始训练模型
rtrees->train(tData);
//对图像内所有512*512个背景点进行预测,不同的预测结果,图像背景区域显示不同的颜色
Vec3b red(0, 0, 255), green(0, 255, 0), blue(255, 0, 0);
for (int i = 0; i < image.rows; ++i)
for (int j = 0; j < image.cols; ++j)
{
Mat sampleMat = (Mat_<float>(1, 2) << j, i); //生成测试数据
float response = rtrees->predict(sampleMat); //进行预测,返回1或-1
if (response == 1)
image.at<Vec3b>(i, j) = red;
else if (response == 2)
image.at<Vec3b>(i, j) = green;
else
image.at<Vec3b>(i, j) = blue;
}
//把训练样本点,显示在图相框内
for (int i = 0; i < trainingDataMat.rows; i++)
{
const float * v = trainingDataMat.ptr<float>(i);
Point pt = Point((int)v[0], (int)v[1]);
if (labels[i] == 1) //不同的圆点,标记不同的颜色
circle(image, pt, 5, Scalar::all(0), -1, 8);
else if (labels[i] == 2)
circle(image, pt, 5, Scalar::all(128), -1, 8);
else
circle(image, pt, 5, Scalar::all(255), -1, 8);
}
//显示分类结果图像
imshow("随机森林分类器示例", image);
waitKey(0);
return 0;
}
执行后的结果如下: