我目前正在用Python构建模型,并从另一个Java客户端获取结果。
我需要知道如何从具有1个以上维度的TensorProto中获取float[][]
或List<List<Float>>
(类似)。
在Python中,完成这项工作可能非常容易:
from tensorflow.python.framework import tensor_util
.
.
.
print tensor_util.MakeNdarray(tensorProto)
=====更新=======:
如果Java的
tensorProto.getFloatValList()
由Python的tensor_util.make_tensor_proto(vector)
创建,则也不起作用。以上所有情况都可以通过@Ash的答案解决
最佳答案
正如Allen在评论中提到的那样,这可能是一个很好的功能要求。
但是在此期间,一种变通方法是构造并运行一个图,该图解析编码的protobuf并返回Tensor
。它不会特别有效,但是您可以执行以下操作:
import org.tensorflow.*;
import java.util.Arrays;
public final class ProtoToTensor {
public static Tensor<Float> tensorFromSerializedProto(byte[] serialized) {
// One may way to cache the Graph and Session as member variables to avoid paying the cost of
// graph and session construction on each call.
try (Graph g = buildGraphToParseProto();
Session sess = new Session(g);
Tensor<String> input = Tensors.create(serialized)) {
return sess.runner()
.feed("input", input)
.fetch("output")
.run()
.get(0)
.expect(Float.class);
}
}
private static Graph buildGraphToParseProto() {
Graph g = new Graph();
// The graph construction process in Java is currently (as of TensorFlow 1.4) very verbose.
// Once https://github.com/tensorflow/tensorflow/issues/7149 is resolved, this should become
// *much* more convenient and succint.
Output<String> in =
g.opBuilder("Placeholder", "input")
.setAttr("dtype", DataType.STRING)
.setAttr("shape", Shape.scalar())
.build()
.output(0);
g.opBuilder("ParseTensor", "output").setAttr("out_type", DataType.FLOAT).addInput(in).build();
return g;
}
public static void main(String[] args) {
// Let's say you got a byte[] representation of the proto somehow.
// In this case, I got it from Python from the following program
// that serializes the 1x1 matrix:
/*
import tensorflow as tf
list(bytearray(tf.make_tensor_proto([[1.]]).SerializeToString()))
*/
byte[] bytes = {8, 1, 18, 8, 18, 2, 8, 1, 18, 2, 8, 1, 42, 4, 0, 0, (byte)128, 63};
try (Tensor<Float> t = tensorFromSerializedProto(bytes)) {
// You can now get an float[][] array using t.copyTo().
// t.shape() gives shape information.
System.out.println("Tensor: " + t);
float[][] f = t.copyTo(new float[1][1]);
System.out.println("float[][]: " + Arrays.deepToString(f));
}
}
}
如您所见,这使用了一些相当低级的API来构造图形和会话。提出一个功能请求,用一行代替所有这些请求是合理的:
Tensor<Float> t = Tensor.createFromProto(serialized);