我试图在Haskell中实现Wikipedia中的旋转卡尺与维基百科唯一的区别是,我在计算凸多边形的最大宽度,而不是最小宽度来测试旋转卡尺的实现。这个实现似乎不正确,因为我得到的是TFOSS的最后一个测试用例的97,而不是98。有人能告诉我这个实现有什么问题吗如果出现缩进问题,我已经在ideone上发布了代码。
谢谢您

import Data.List
import Data.Array
import Data.Maybe

data Point a = P a a deriving ( Show , Ord , Eq )
data Vector a = V a a deriving ( Show , Ord , Eq )
data Turn = S | L | R deriving ( Show , Eq , Ord , Enum  )


--start of convex hull

compPoint :: ( Num  a , Ord a ) => Point a -> Point a -> Ordering
compPoint ( P x1 y1 ) ( P x2 y2 )
  | compare x1 x2 == EQ = compare y1 y2
  | otherwise = compare x1 x2

sortPoint :: ( Num a , Ord a ) => [ Point a ] -> [ Point a ]
sortPoint xs = sortBy ( \ x y -> compPoint x y ) xs

findTurn :: ( Num a , Ord a , Eq a ) => Point a -> Point a -> Point a -> Turn
findTurn ( P x0 y0 ) ( P x1 y1 ) ( P x2 y2 )
 | ( y1 - y0 ) * ( x2- x0 ) < ( y2 - y0 ) * ( x1 - x0 ) = L
 | ( y1 - y0 ) * ( x2- x0 ) == ( y2 - y0 ) * ( x1 - x0 ) = S
 | otherwise = R

hullComputation :: ( Num a , Ord a ) => [ Point a ] -> [ Point a ] -> [ Point a ]
hullComputation [x] ( z:ys ) = hullComputation [z,x] ys
hullComputation xs [] = xs
hullComputation  ( y : x : xs ) ( z : ys )
  |  findTurn x y z == R = hullComputation ( x:xs ) ( z : ys )
  |  findTurn x y z == S = hullComputation ( x:xs ) ( z : ys )
  |  otherwise = hullComputation ( z : y : x : xs ) ys

convexHull :: ( Num a , Ord a ) => [ Point a ] -> [ Point a ]
convexHull [] = []
convexHull [ p ] =  [ p ]
convexHull [ p1 , p2 ] = [ p1 , p2 ]
convexHull xs = final where
    txs = sortPoint xs
    ( x : y : ys  ) = txs
        lhull = hullComputation [y,x] ys
    ( x': y' : xs' ) = reverse txs
    uhull = hullComputation [ y' , x' ] xs'
    final = ( init lhull ) ++ ( init uhull )

--end of convex hull


--dot product for getting angle
angVectors :: ( Num a , Ord a , Floating a ) => Vector a -> Vector a -> a
angVectors ( V ax ay ) ( V bx by ) = theta where
    dot = ax * bx + ay * by
    a = sqrt $ ax ^ 2 + ay ^ 2
    b = sqrt $ bx ^ 2 + by ^ 2
    theta = acos $ dot / a / b

--start of rotating caliper part http://en.wikipedia.org/wiki/Rotating_calipers

--rotate the vector x y by angle t
rotVector :: ( Num a , Ord a , Floating a ) => Vector a -> a -> Vector a
rotVector ( V x y ) t = V ( x * cos t - y * sin t ) ( x * sin t + y * cos t )

--square of dist between two points

distPoints :: ( Num a , Ord a , Floating a ) => Point a -> Point a -> a
distPoints ( P x1 y1 ) ( P x2 y2 ) =  ( x1 - x2 ) ^ 2 + ( y1 - y2 ) ^ 2

--rotating caliipers

rotCal :: ( Num a , Ord a , Floating a ) => [ Point a ] -> a -> Int -> Int -> Vector a -> Vector a -> a -> Int -> a
rotCal arr ang  pa pb ca@( V ax ay ) cb@( V bx by ) dia n
   | ang > pi = dia
   | otherwise = rotCal arr ang' pa' pb' ca' cb' dia' n where
    P x1 y1 = arr !! pa
    P x2 y2 = arr !! ( mod ( pa + 1 ) n )
    P x3 y3 = arr !! pb
    P x4 y4 = arr !! ( mod ( pb + 1 ) n )
    t1 = angVectors ca ( V ( x2 - x1 ) ( y2 - y1 ) )
    t2 = angVectors cb ( V ( x4 - x3 ) ( y4 - y3 ) )
    ca' = rotVector ca  $ min t1 t2
    cb' = rotVector cb  $ min t1 t2
    ang' = ang + min t1 t2
    pa' = if t1 < t2 then mod ( pa + 1 ) n else pa
    pb' = if t1 >= t2 then mod ( pb + 1 ) n else pb
    dia' = max dia $ distPoints ( arr !! pa' ) ( arr !! pb' )
    --dia' = max dia  $ if t1 < t2 then distPoints ( arr !! pa' ) ( arr !! pb ) else     distPoints ( arr !! pb' ) ( arr !! pa )


solve :: ( Num a , Ord a , Floating a ) => [ Point a ] -> String
solve [] = "0"
solve [ p ] = "0"
solve [ p1 , p2 ] = show $ distPoints p1 p2
solve [ p1 , p2 , p3 ] = show $ max ( distPoints p1 p2 ) $ max ( distPoints p2 p3 ) ( distPoints p3 p1 )
solve arr = show $ rotCal arr' 0 pa pb ( V 1 0 ) ( V (-1) 0 ) dia n where
       arr' =  convexHull   arr
       y1 = minimumBy ( \( P _ y1 ) ( P _ y2 ) -> compare y1 y2 ) arr'
       y2 = maximumBy ( \( P _ y1 ) ( P _ y2 ) -> compare y1 y2 ) arr'
       pa = fromJust . findIndex ( \ t -> t == y1 ) $ arr'
       pb = fromJust . findIndex ( \ t -> t == y2 ) $ arr'
       dia = distPoints ( arr' !! pa ) ( arr' !! pb )
       n = length arr'

 --end of rotating caliper

 --spoj code for testing
final :: ( Num a , Ord a , Floating a ) => [ Point a ] -> String
final [] = "0"
final [ p ] = "0"
final [ p1 , p2 ] = show $ distPoints p1 p2
final [ p1 , p2 , p3 ] = show $ max ( distPoints p1 p2 ) $ max ( distPoints p2 p3 ) ( distPoints p3 p1 )
final arr = solve . convexHull $ arr

format :: ( Num a , Ord a , Floating a ) => [ Int ] -> [ [ Point a ]]
format [] = []
format (x:xs ) =  t : format b  where
    ( a , b ) = splitAt ( 2 * x ) xs
    t = helpFormat a where
        helpFormat [] = []
        helpFormat ( x' : y' : xs' ) = ( P ( fromIntegral x' ) ( fromIntegral  y' ) ) : helpFormat xs'

readD :: String -> Int
readD = read


main = interact $ unlines . map  final . format . concat . ( map . map ) readD . map words . tail  . lines

--end of spoj code

最佳答案

我不会找出你代码中的错误所在。
我将告诉您一些简单的调试技术。
将代码加载到ghci中,以交互方式运行代码,并检查结果是否与预期一致。

$ ghci
ghci> :load your-program.hs
ghci> compPoint (P 0 0) (P 0 0)
EQ
ghci>

尝试用不同的参数调用compPoint,直到您满意它是正确的。然后转到下一个函数。
使用test.quickcheck。
这基本上是在自动化以前的方法。
ghci> :load your-program.hs
ghci> :m +Test.QuickCheck
ghci Test.QuickCheck> let prop_equalPointsAreEqual x y = EQ == compPoint (P x y) (P x y)
ghci Test.QuickCheck> quickCheck prop_equalPointsAreEqual

…并测试更复杂的属性,直到您满意compPoint是正确的然后转到下一个函数。
谷歌快速检查教程。
如果您希望打印中间值作为调试手段,则使用trace和/或traceShowfromDebug.Trace
注意:我的例子从测试低级函数开始,然后继续工作,但是你可能更喜欢从高级开始,然后继续工作。

10-04 22:23