我有以下代码试图最小化一个对数似然函数。
#!/usr/bin/python
import math
import random
import numpy as np
from scipy.optimize import minimize
def loglikelihood(params, data):
(mu, alpha, beta) = params
tlist = np.array(data)
r = np.zeros(len(tlist))
for i in xrange(1,len(tlist)):
r[i] = math.exp(-beta*(tlist[i]-tlist[i-1]))*(1+r[i-1])
loglik = -tlist[-1]*mu
loglik = loglik+alpha/beta*sum(np.exp(-beta*(tlist[-1]-tlist))-1)
loglik = loglik+np.sum(np.log(mu+alpha*r))
return -loglik
atimes = [ 148.98894201, 149.70253172, 151.13717804, 160.35968355,
160.98322609, 161.21331798, 163.60755544, 163.68994973,
164.26131871, 228.79436067]
a= 0.01
alpha = 0.5
beta = 0.6
print loglikelihood((a, alpha, beta), atimes)
res = minimize(loglikelihood, (0.01, 0.1,0.1), method = 'BFGS',args = (atimes,))
print res
它给了我
28.3136498357
./test.py:17: RuntimeWarning: invalid value encountered in log
loglik = loglik+np.sum(np.log(mu+alpha*r))
status: 2
success: False
njev: 14
nfev: 72
hess_inv: array([[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
fun: 32.131359359964378
x: array([ 0.01, 0.1 , 0.1 ])
message: 'Desired error not necessarily achieved due to precision loss.'
jac: array([ -2.8051672 , 13.06962156, -48.97879982])
注意,它根本没有优化参数,最小化值32大于28,这就是a=0.01,alpha=0.5,beta=0.6得到的结果。有可能通过选择更好的初始猜测来避免这个问题,但如果是这样,我怎么能自动做到这一点呢?
最佳答案
我模仿了你的例子,试了一下。如果你坚持使用bfgs解算器,经过几次迭代,mu+ alpha * r
会有一些负数,这就是你得到runtimewarning的方式。
我能想到的最简单的解决方法是切换到Nelder Mead Solver。
res = minimize(loglikelihood, (0.01, 0.1,0.1), method = 'Nelder-Mead',args = (atimes,))
它会给你这个结果:
28.3136498357
status: 0
nfev: 159
success: True
fun: 27.982451280648817
x: array([ 0.01410906, 0.68346023, 0.90837568])
message: 'Optimization terminated successfully.'
nit: 92