我得到了一个异常,因为我试图用逻辑表达式切片我的熊猫数据帧。
我的资料有以下表格:

df
    GDP_norm    SP500_Index_deflated_norm
Year
1980    2.121190    0.769400
1981    2.176224    0.843933
1982    2.134638    0.700833
1983    2.233525    0.829402
1984    2.395658    0.923654
1985    2.497204    0.922986
1986    2.584896    1.09770

df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 38 entries, 1980 to 2017
Data columns (total 2 columns):
GDP_norm                     38 non-null float64
SP500_Index_deflated_norm    38 non-null float64
dtypes: float64(2)
memory usage: 912.0 bytes

命令如下:
df[((df['GDP_norm'] >=3.5 & df['GDP_norm'] <= 4.5) & (df['SP500_Index_deflated_norm'] > 3)) | (

   (df['GDP_norm'] >= 4.0 & df['GDP_norm'] <= 5.0) & (df['SP500_Index_deflated_norm'] < 3.5))]

错误消息如下:
TypeError: cannot compare a dtyped [float64] array with a scalar of type [bool]

最佳答案

我建议分别创建布尔掩码,以便更好的可读性和更容易的错误处理。
以下是()m1代码中缺少的m2,问题在运算符优先级中:
docs-6.16。see&的运算符优先级较高,如>=

Operator                                Description

lambda                                  Lambda expression
if – else                               Conditional expression
or                                      Boolean OR
and                                     Boolean AND
not x                                   Boolean NOT
in, not in, is, is not,                 Comparisons, including membership tests
<, <=, >, >=, !=, ==                    and identity tests
|                                       Bitwise OR
^                                       Bitwise XOR
&                                       Bitwise AND

(expressions...), [expressions...],     Binding or tuple display, list display,
{key: value...}, {expressions...}       dictionary display, set display

m1 = (df['GDP_norm'] >=3.5) & (df['GDP_norm'] <= 4.5)
m2 = (df['GDP_norm'] >= 4.0) & (df['GDP_norm'] <= 5.0)

m3 = m1 & (df['SP500_Index_deflated_norm'] > 3)
m4 = m2 & (df['SP500_Index_deflated_norm'] < 3.5)

df[m3 | m4]

10-02 08:15