我有一个节点列表,每个节点都分解为更多节点。例如
因此,我们有Node0 = w01 * w12 * Node2 + w03 * Node3 + w01 * w14 Node4。
我的C++代码用于对给定的一组权重分解执行上述聚合/分解/合并,如下所示。但是,我觉得有很多需要优化的地方。仅举一个例子,我正在遍历
topWeights
的密钥,并将它们收集在topNodeNames
中,这似乎效率很低。是否有任何STL算法可以帮助我加快速度,并避免不必要的复制?
#include <string>
#include <unordered_map>
template<class T, class U> using umap = std::unordered_map<T, U>;
umap<std::string, double> getWeights(const std::string& nodeName, const umap<std::string, umap<std::string, double>>& weightTrees)
{
const auto it = weightTrees.find(nodeName);
if (it == weightTrees.end())
return umap<std::string, double>();
umap<std::string, double> topWeights = it->second;
std::vector<std::string> topNodeNames;
for (const auto& kv : topWeights)
topNodeNames.push_back(kv.first);
for (const std::string& topNodeName : topNodeNames)
{
umap<std::string, double> subWeights = getWeights(topNodeName, weightTrees);
if (subWeights.size() > 0)
{
const double topWeight = topWeights[topNodeName];
topWeights.erase(topNodeName);
for (const auto& subWeight : subWeights)
{
const auto it = topWeights.find(subWeight.first);
if (it == topWeights.end())
topWeights[subWeight.first] = topWeight * subWeight.second;
else
it->second += topWeight * subWeight.second;
}
}
}
return topWeights;
}
int main()
{
umap<std::string, umap<std::string, double>> weightTrees = {{ "Node0", {{ "Node1",0.5 },{ "Node2",0.3 },{ "Node3",0.2 }} },
{ "Node1", {{ "Node2",0.1 },{ "Node4",0.9 }} }};
umap<std::string, double> w = getWeights("Node0", weightTrees); // gives {Node2: 0.35, Node3: 0.20, Node4: 0.45}
}
最佳答案
主要问题是,您将每个节点的递归到每个子节点的,这通常是高度冗余的。避免这种情况的一种方法是在节点名称上引入顺序,其中“较高”的节点仅取决于“较低”的节点,然后以相反的顺序进行计算(对于每个节点,您已经完全知道所有子权重)。但是,我认为没有std
算法会为您找到此顺序,因为您不能廉价地临时确定节点依赖性(“节点X是否依赖于节点Y?如果不是直接依赖于节点Y,我们可能必须搜索整个树...”)。
因此,您可以走动态编程路线,并将完全计算出的节点存储在某个位置。甚至更好-您可以在遍历整个树时将其整平为只有叶子的权重。只要您在整个递归中保持展平,实际上在递归形式中这是相当优雅的:using NodeWeights = std::unordered_map<std::string, double>;
using NonLeaves = std::unordered_map<std::string, NodeWeights>;
// Modifies the tree so that the given root has no non-leaf children.
void flattenTree(std::string root, NonLeaves& toFlatten)
{
auto rootIt = toFlatten.find(root);
if (rootIt == toFlatten.end())
return;
NodeWeights& rootWeights = rootIt->second;
NodeWeights leafOnlyWeights;
for (auto kvp : rootWeights)
{
const std::string& childRoot = kvp.first;
double childWeight = kvp.second;
std::cout << "Checking child " << childRoot << std::endl;
// If the graph is indeed acyclic, then the root kvp here is untouched
// by this call (and thus references to it are not invalidated).
flattenTree(childRoot, toFlatten);
auto childIt = toFlatten.find(childRoot);
// The child is a leaf after flattening: Do not modify anything.
if (childIt == toFlatten.end())
{
leafOnlyWeights[childRoot] = childWeight;
continue;
}
// Child is still not a leaf (but all its children are now leaves):
// Redistribute its weight among our other child weights.
const NodeWeights& leafWeights = childIt->second;
for (auto leafKvp : leafWeights)
leafOnlyWeights[leafKvp.first] += childWeight * leafKvp.second;
}
rootWeights = leafOnlyWeights;
}
int main()
{
umap<std::string, umap<std::string, double>> weightTrees = {{ "Node0", {{ "Node1",0.5 },{ "Node2",0.3 },{ "Node3",0.2 }} },
{ "Node1", {{ "Node2",0.1 },{ "Node4",0.9 }} }};
auto flattenedTree = weightTrees;
flattenTree("Node0", flattenedTree);
umap<std::string, double> w = flattenedTree["Node0"]; // Should give {Node2: 0.35, Node3: 0.20, Node4: 0.45}
for (auto kvp : w)
std::cout << kvp.first << ": " << kvp.second << std::endl;
}
Demo
由于每个节点最多只能展平一次,因此您将无法运行原始算法具有的指数运行时间。