我有有限的缓冲区,需要处理生产者使用者问题,并且只能修改prod和cons函数。该代码运行时只有一个使用者线程和生产者线程没有问题。但是,每一个都有多个,迟早总会给我一个相同的问题:
p5p1: p5p2a.c:207: bb_remove: Assertion `bbp->cnt > 0' failed.
我没有得到的是在调用
bbp->cnt
函数之前检查bbp_remove()
变量时如何发生此错误。编辑:问题已解决。我没有在两个函数中检查锁中的变量。
#include <sys/times.h>
#include <unistd.h>
#include <assert.h>
#include <stdlib.h>
#include <pthread.h>
#include <time.h>
#include <errno.h>
#include <stdio.h>
#define DEBUG 0
#define BUF_SIZE 100000
#define ITER 10000000
#define PROD_THRD 3
#define CONS_THRD 3
#define USAGE_STRING "Usage: %s\n"
extern int errno;
/* This is the bounded buffer type */
typedef struct {
int cnt, in, out;
pthread_mutex_t lock; /* Mutex to avoid race conditions */
int buf[BUF_SIZE]; /* The data passed is the id of the
* producer */
} bbuf_t;
typedef struct {
bbuf_t *bbp;
int id;
} parg_t;
/*
* yield()
* Because there is no yield system call in Linux, what we
* do is to put the thread to sleep for 1 ms. Actually, it
* will sleep for at least 1/HZ, which is 10 ms in Linux/386.
*/
#define YIELD_s 0
#define YIELD_ns 1000000
void yield() {
struct timespec st = {YIELD_s, YIELD_ns};
if( (nanosleep(&st, NULL)) == -1 && (errno == EINVAL)) {
perror("nanosleep");
pthread_exit(NULL);
}
}
/* Initialize bounded buffer */
int bbuf_init(bbuf_t *bbp) {
if(bbp == NULL)
return 0;
bbp->in = 0;
bbp->out = 0;
bbp->cnt = 0;
pthread_mutex_init(&(bbp->lock), NULL); /* I do not understand, but the
* compiler complains when I use
* PTHREAD_MUTEX_INITIALIZER */
return 1;
}
/* Print the bounded buffer members that matter */
void print_bbuf(bbuf_t *bbp) {
printf("bbp->in = %d bbp->out = %d bbp_cnt = %d \n",
bbp->in, bbp->out, bbp->cnt);
}
/* To validate the value of the members in, out and cnt of bbuf_t */
int val(int n, int min, int max) {
return( (min <= n) && (n <= max));
}
/* Ensure that the values of the members in, out and cnt are consistent */
int consist(int cnt, int in, int out) {
return ( in == ((out + cnt) % BUF_SIZE) );
}
/* This is the code of the checker thread. It is used to ensure that
* the bounded buffer has not been corrupted.
* Every 100 ms it checks the values of: in, out and cnt.
* This thread exits either if it detects the buffer has been corrupted
* or if it does not detect any activity in 50 consecutive iterations,
* i.e. approximately 5s. */
/* These constants are used with nanosleep() and
* put a process to sleep for 100 ms */
#define SLEEP_s 0
#define SLEEP_ns 100000000
#define MAX_IDLE 50
void *check(void *arg) {
bbuf_t *bbp = arg;
int cnt[2], in[2], out[2]; /* values read */
int idle;
struct timespec st = {SLEEP_s, SLEEP_ns}; /* 100 ms */
while(1) {
pthread_mutex_lock( &(bbp->lock) );
in[1] = bbp->in;
out[1] = bbp->out;
cnt[1] = bbp->cnt;
pthread_mutex_unlock( &(bbp->lock) );
if(in[1] == in[0] && out[1] == out[0] && cnt[1] == cnt[0] ) {
idle++;
if( idle >= MAX_IDLE ) {
printf("Checking thread exiting:");
print_bbuf(bbp);
printf("\t no activity detected for some time.\n");
pthread_exit(NULL);
}
} else {
idle = 0;
}
if( !val(in[1], 0, BUF_SIZE - 1) ) {
printf("Invalid value in = %d \n", in[1]);
pthread_exit(NULL);
} else if ( !val(out[1], 0, BUF_SIZE - 1) ) {
printf("Invalid value out = %d \n", out[1]);
pthread_exit(NULL);
} else if ( !val(cnt[1], 0, BUF_SIZE) ) {
printf("Invalid value cnt = %d \n", cnt[1]);
pthread_exit(NULL);
} else if ( !consist(cnt[1], in[1], out[1]) ) {
printf("Inconsistent buffer: cnt = %d in = %d out = %d \n",
cnt[1], in[1], out[1]);
pthread_exit(NULL);
}
if( (nanosleep(&st, NULL) == -1) && (errno == EINVAL)) {
perror("nanosleep");
pthread_exit(NULL);
}
in[0] = in[1];
out[0] = out[1];
cnt[0] = cnt[1];
}
}
/* The producer threads may use this code to
* enter one item into the buffer */
void bb_enter(bbuf_t *bbp, int me) {
assert( bbp->cnt < BUF_SIZE);
(bbp->buf)[bbp->in] = me;
(bbp->in)++;
(bbp->in) %= BUF_SIZE;
(bbp->cnt)++;
//printf("%d\n",bbp->cnt);
}
/* This is the code for the producer threads.
*
* To avoid busy waiting (or at least too much busy waiting) the producers
* should yield, using the yield() defined above, if the buffer is
* full. In that case, they should print a debugging message as well.
*
* Each producer should produce ITER (10 M) items: an integer with
* the id it receives in prod()'s argument.
*/
void *prod(void *arg) {
parg_t *parg = (parg_t *)arg;
bbuf_t *bbp = parg->bbp;
int me = parg->id;
/* Add variables and code, if necessary */
printf("I am a producer and have started\n");
int gcnt = 0;
while( gcnt <= ITER ){
if(bbp->cnt < BUF_SIZE){
pthread_mutex_lock(&(bbp->lock));
bb_enter(bbp,me);
gcnt++;
pthread_mutex_unlock(&(bbp->lock));}
else if( bbp->cnt == (BUF_SIZE-1)) {printf("I shall produce yield()\n"); yield();}
}
printf("I am a producer and have ended\n");
return;
}
/* The consumer threads may use this function to
* remove an item */
int bb_remove(bbuf_t *bbp) {
int val;
assert(bbp->cnt > 0);
val = (bbp->buf)[bbp->out];
(bbp->out)++;
(bbp->out) %= BUF_SIZE;
(bbp->cnt)--;
return val;
}
/* This is the code for the consumer threads.
* To avoid busy waiting (or at least too much busy waiting) consumers
* should yield, using the yield() defined above, if the buffer is
* empty. In that case, they should print a debugging message as well.
*
* Each consumer should consume ITER (10 M) items, and keep track of the
* producers of the items it consumes: use the cnt[] below.
*/
void *cons(void *arg) {
bbuf_t *bbp = (bbuf_t *)arg;
int cnt[PROD_THRD];
/* Add variables and code, if necessary:
* do not forget to initialize cnt */
printf("I am a consumer and have started\n");
int i;
for(i = 0; i < PROD_THRD; i++){
cnt[i] = 0;}
int temp;
int gcnt = 0;
while( gcnt <= ITER ){
if(bbp->cnt > 0){
pthread_mutex_lock(&(bbp->lock));
temp = bb_remove(bbp);
gcnt++;
cnt[temp]++;
pthread_mutex_unlock(&(bbp->lock));}
else if( bbp->cnt == 0) {printf("I shall consume yield()\n"); yield();}
}
printf("I am a consumer and have ended\n");
return;
}
int main(int argc, char *argv[]) {
int i;
pthread_t *tid, ctid;
parg_t *parg;
bbuf_t *bbp;
/* This is to measure the time it takes to run the program */
struct tms t;
clock_t start, end;
long ticks = sysconf(_SC_CLK_TCK);
start = times(&t);
if( argc != 1 ) {
printf(USAGE_STRING, argv[0]);
exit(1);
}
/* Array for pthread_join() */
if((tid = (pthread_t *) malloc((PROD_THRD + CONS_THRD) * sizeof(pthread_t)))
== NULL ) {
printf("Out of memory.\n");
exit(2);
}
/* Allocate Bounded Buffer */
if((bbp = (bbuf_t *) malloc(sizeof(bbuf_t))) == NULL ) {
printf("Out of memory. \n");
exit(2);
}
/* Initialize Bounded Buffer */
if( bbuf_init(bbp) == 0 ) {
printf("Failed to initialize bounded buffer\n");
exit(3);
}
/* Arguments for producer threads */
if((parg = (parg_t *) malloc( PROD_THRD * sizeof (parg_t))) == NULL ) {
printf("Out of memory.\n");
exit(2);
}
/* Create checker thread */
if( pthread_create(&ctid, NULL, check, bbp) )
perror("pthread_create");
printf("Created checker thread %u\n", (unsigned)ctid);
/* Create consumer threads */
for( i = 0; i < CONS_THRD; i++ ) {
/* We pass the same data structure, the bounded buffer,
* to each consumer: they need to synchronize to access it */
if( pthread_create(tid+i, NULL, cons, bbp) )
perror("pthread_create");
printf("Created consumer thread %u\n", (unsigned)tid[i]);
}
/* Create producer threads */
for( i = 0; i < PROD_THRD; i++ ) {
/* Because we want each consumer to keep track of the
* producer of the items it consumes, we assign an
* id to each producer thread */
parg[i].bbp = bbp;
parg[i].id = i;
if( pthread_create(tid+(i+CONS_THRD), NULL, prod, parg+i) )
perror("pthread_create");
printf("Created producer thread %u (%d)\n", (unsigned)tid[i+CONS_THRD], i);
}
/* Join consumer and producer threads */
for( i = 0; i < CONS_THRD + PROD_THRD; i ++ ) {
if( pthread_join(tid[i], NULL) == 0 ) {
printf("Joined thread %u.\n", (unsigned)tid[i]);
} else {
printf("Failed to join thread %u\n", (unsigned)tid[i]);
}
}
/* Join checker thread */
if( pthread_join(ctid, NULL) == 0 ) {
printf("Joined checker thread %u.\n", (unsigned)ctid);
} else {
printf("Failed to join checker thread %u\n", (unsigned)ctid);
}
/* How long did it take to run this ? */
end = times(&t);
printf("Wall time %2.4f s \n", (float)(end - start) / ticks);
return 0;
}
最佳答案
在检查bbp->cnt
之前,您应该输入互斥锁。由于您是在输入互斥锁之前进行检查的,因此另一个线程可以在获取互斥锁之前减小该值,并尝试自己减小该值。