我有以下numpy
随机2D数组:
np.random.rand(30, 20)
我想遍历数组中的每个网格单元。如果网格单元的值> 0.6,那么我想将多余的部分分配给它的紧邻的8个相邻单元(在角落网格单元的情况下,相邻单元的数量会更少)。
多余的部分应按照2条用户选择的规则之一进行重新分配:
有没有一种方法可以在
numpy
中执行此操作而无需求助于for
循环? 最佳答案
好的,这是我的看法:在每一步中,算法都会检测所有超阈值单元,并同时平均或按比例更新所有这些单元及其所有邻居。这是完全矢量化的,有两种实现方式:
由于此过程通常不会在一个步骤中收敛,因此将其放置在一个循环中,但是,除了最小的网格以外,对于所有其他网格,其开销都应该是最小的,因为其有效载荷非常大。在用户提供了一定数量的周期后,或者在没有更多的超阈值单位时,该循环将终止。 (可选)它可以记录迭代之间的欧几里得增量。
关于算法的几句话:如果不是针对边界,则均匀扩展操作可以描述为减去重新分布的质量p的模式,然后添加与环形核k = [1 1 1; 1 0 1; 1 1 1]/8;类似地,与剩余质量r成正比的再分布可以写成
(1)r(k *(p/(k * r)))
其中*是卷积运算符,乘法和除法是分量明智的。解析该公式,我们看到p中的每个点首先通过其8个邻居上的剩余质量r * k的平均值进行归一化,然后再扩展到所述邻居(另一个卷积)并按残差进行缩放。预归一化可保证质量守恒。特别是,它可以正确地对边界和角进行归一化。在此基础上,我们看到偶数规则的边界问题可以用相似的方式解决:通过使用(1),其中r替换为1。
有趣的一点:使用比例规则可以建立非收敛模式。这是两个振荡器:
0.7 0 0.8 0 0.8 0 0 0 0 0
0 0.6 0 0.6 0 0.6 0 1.0 0.6 0
0.8 0 1.0 0 1.0 0 0 0 0 0
0 0.6 0 0.6 0 0.6
代码在下面,恐怕要花很长的时间和技术性了,但是我试图至少解释一下main(最快)分支。主要功能称为
level
,还有一些简单的测试功能。有一些
print
语句,但是我认为这是唯一的Python3依赖项。import numpy as np
try:
from scipy import signal
HAVE_SCIPY = True
except ImportError:
HAVE_SCIPY = False
import time
SPARSE_THRESH = 0.05
USE_SCIPY = False # actually, numpy workaround is a bit faster
KERNEL = np.zeros((3, 3)) + 1/8
KERNEL[1, 1] = 0
def scipy_ring(a):
"""convolve 2d array a with kernel
1/8 1/8 1/8
1/8 0 1/8
1/8 1/8 1/8
"""
return signal.convolve2d(a, KERNEL, mode='same')
def numpy_ring(a):
"""convolve 2d array a with kernel
1/8 1/8 1/8
1/8 0 1/8
1/8 1/8 1/8
"""
tmp = a.copy()
tmp[:, 1:] += a[:, :-1]
tmp[:, :-1] += a[:, 1:]
out = tmp.copy()
out[1:, :] += tmp[:-1, :]
out[:-1, :] += tmp[1:, :]
return (out - a) / 8
if USE_SCIPY and HAVE_SCIPY:
conv_with_ring = scipy_ring
else:
conv_with_ring = numpy_ring
# next is yet another implementation of convolution including edge correction.
# what for? it is most of the time much slower than the above but can handle
# sparse inputs and consequently is faster if the fraction of above-threshold
# cells is small (~5% or less)
SPREAD_CACHE = {}
def precomp(sh):
"""precompute sparse representation of operator mapping ravelled 2d
array of shape sh to boundary corrected convolution with ring kernel
1/8 1/8 1/8 / 1/5 0 1/5 0 1/3 \
1/8 0 1/8 | 1/5 1/5 1/5 at edges, 1/3 1/3 at corners |
1/8 1/8 1/8 \ /
stored are
- a table of flat indices encoding neighbours of the
cell whose flat index equals the row no in the table
- two scaled copies of the appropriate weights which
equal 1 / neighbour count
"""
global SPREAD_CACHE
m, n = sh
# m*n grid points, each with up to 8 neighbours:
# tedious but straighforward
indices = np.empty((m*n, 8), dtype=int)
indices[n-1:, 1] = np.arange(m*n - (n-1)) # NE
indices[:-(n+1), 3] = np.arange(n+1, m*n) # SE
indices[:-(n-1), 5] = np.arange(n-1, m*n) # SW
indices[n+1:, 7] = np.arange(m*n - (n+1)) # NW
indices[n:, 0] = np.arange((m-1)*n) # N
indices[:n, [0, 1, 7]] = -1
indices[:-1, 2] = np.arange(1, m*n) # E
indices[n-1::n, 1:4] = -1
indices[:-n, 4] = np.arange(n, m*n) # S
indices[-n:, 3:6] = -1
indices[1:, 6] = np.arange(m*n - 1) # W
indices[::n, 5:] = -1
# weights are constant along rows, therefore m*n vector suffices
nei_count = (indices > -1).sum(axis=-1)
weights = 1 / nei_count
SPREAD_CACHE[sh] = indices, weights, 8 * weights.reshape(sh)
return indices, weights, 8 * weights.reshape(sh)
def iadd_conv_ring(a, out):
"""add boundary corrected convolution of 2d array a with
ring kernel
1/8 1/8 1/8 / 1/5 0 1/5 0 1/3 \
1/8 0 1/8 | 1/5 1/5 1/5 at edges, 1/3 1/3 at corners |
1/8 1/8 1/8 \ /
to out.
IMPORTANT: out must be flat and have one spare field at its end
which is used as a "/dev/NULL" by the indexing trickery
if a is a tuple it is interpreted as a sparse representation of the
form: (flat) indices, values, shape.
"""
if isinstance(a, tuple): # sparse
ind, val, sh = a
k_ind, k_wgt, __ \
= SPREAD_CACHE[sh] if sh in SPREAD_CACHE else precomp(sh)
np.add.at(out, k_ind[ind, :], k_wgt[ind, None]*val[:, None])
else: # dense
sh = a.shape
k_ind, k_wgt, __ \
= SPREAD_CACHE[sh] if sh in SPREAD_CACHE else precomp(sh)
np.add.at(out, k_ind, k_wgt[:, None]*a.ravel()[:, None])
return out
# main function
def level(input, threshold=0.6, rule='proportional', maxiter=1,
switch_to_sparse_at=SPARSE_THRESH, use_conv_matrix=False,
track_Euclidean_deltas=False):
"""spread supra-threshold mass to neighbours until equilibrium reached
updates are simultaneous, iterations are capped at maxiter
'rule' can be 'proportional' or 'even'
'switch_to_sparse_at' and 'use_conv_matrix' influence speed but not
result
returns updated grid, convergence flag, vector of numbers of supratheshold
cells for each iteration, runtime, [vector of Euclidean deltas]
"""
sh = input.shape
m, n = sh
nei_ind, rec_nc, rec_8 \
= SPREAD_CACHE[sh] if sh in SPREAD_CACHE else precomp(sh)
if rule == 'proportional':
def iteration(state, state_f):
em = state > threshold
nnz = em.sum()
if nnz == 0: # no change, send signal to quit
return nnz
elif nnz < em.size * switch_to_sparse_at: # use sparse code
ei = np.where(em.flat)[0]
excess = state_f[ei] - threshold
state_f[-1] = 0
exc_nei_sum = rec_nc[ei] * state_f[nei_ind[ei, :]].sum(axis=-1)
exc_nei_ind = np.unique(nei_ind[ei, :])
if exc_nei_ind[0] == -1:
exc_nei_ind = exc_nei_ind[1:]
nm = exc_nei_sum != 0
state_swap = state_f[exc_nei_ind]
state_f[exc_nei_ind] = 1
iadd_conv_ring((ei[nm], excess[nm] / exc_nei_sum[nm], sh),
state_f)
state_f[exc_nei_ind] *= state_swap
iadd_conv_ring((ei[~nm], excess[~nm], sh), state_f)
state_f[ei] -= excess
elif use_conv_matrix:
excess = np.where(em, state - threshold, 0)
state_f[-1] = 0
nei_sum = (rec_nc * state_f[nei_ind].sum(axis=-1)).reshape(sh)
nm = nei_sum != 0
pm = em & nm
exc_p = np.where(pm, excess, 0)
exc_p[pm] /= nei_sum[pm]
wei_nei_sum = iadd_conv_ring(exc_p, np.zeros_like(state_f))
state += state * wei_nei_sum[:-1].reshape(sh)
fm = em & ~nm
exc_f = np.where(fm, excess, 0)
iadd_conv_ring(exc_f, state_f)
state -= excess
else:
excess = np.where(em, state - threshold, 0)
nei_sum = conv_with_ring(state)
# must special case the event of all neighbours being zero
nm = nei_sum != 0
# these can be distributed proportionally:
pm = em & nm
# select, prenormalise by sum of masses of neighbours,...
exc_p = np.where(pm, excess, 0)
exc_p[pm] /= nei_sum[pm]
# ...spread to neighbours and scale
spread_p = state * conv_with_ring(exc_p)
# these can't be distributed proportionally (because all
# neighbours are zero); therefore fall back to even:
fm = em & ~nm
exc_f = np.where(fm, excess * rec_8, 0)
spread_f = conv_with_ring(exc_f)
state += spread_p + spread_f - excess
return nnz
elif rule == 'even':
def iteration(state, state_f):
em = state > threshold
nnz = em.sum()
if nnz == 0: # no change, send signal to quit
return nnz
elif nnz < em.size * switch_to_sparse_at: # use sparse code
ei = np.where(em.flat)[0]
excess = state_f[ei] - threshold
iadd_conv_ring((ei, excess, sh), state_f)
state_f[ei] -= excess
elif use_conv_matrix:
excess = np.where(em, state - threshold, 0)
iadd_conv_ring(excess, state_f)
state -= excess
else:
excess = np.where(em, state - threshold, 0)
# prenormalise by number of neighbours, and spread
spread = conv_with_ring(excess * rec_8)
state += spread - excess
return nnz
else:
raise ValueError('unknown rule: ' + rule)
# master loop
t0 = time.time()
out_f = np.empty((m*n + 1,))
out = out_f[:m*n]
out[:] = input.ravel()
out.shape = sh
nnz = []
if track_Euclidean_deltas:
last = input
E = []
for i in range(maxiter):
nnz.append(iteration(out, out_f))
if nnz[-1] == 0:
if track_Euclidean_deltas:
return out, True, nnz, time.time() - t0, E + [0]
return out, True, nnz, time.time() - t0
if track_Euclidean_deltas:
E.append(np.sqrt(((last-out)**2).sum()))
last = out.copy()
if track_Euclidean_deltas:
return out, False, nnz, time.time() - t0, E
return out, False, nnz, time.time() - t0
# tests
def check_simple():
A = np.zeros((6, 6))
A[[0, 1, 1, 4, 4], [0, 3, 5, 1, 5]] = 1.08
A[5, :] = 0.1 * np.arange(6)
print('original')
print(A)
for rule in ('proportional', 'even'):
print(rule)
for lb, ucm, st in (('convolution', False, 0.001),
('matrix', True, 0.001), ('sparse', True, 0.999)):
print(lb)
print(level(A, rule=rule, switch_to_sparse_at=st,
use_conv_matrix=ucm)[0])
def check_consistency(sh=(300, 400), n=20):
print("""Running consistency checks with different solvers
{} trials each {} x {} cells
""".format(n, *sh))
data = np.random.random((n,) + sh)
sums = data.sum(axis=(1, 2))
for th, lb in ((0.975, 'sparse'), (0.6, 'dense'),
(0.975, 'sparse'), (0.6, 'dense'),
(0.975, 'sparse'), (0.6, 'dense')):
times = np.zeros((2, 3))
for d, s in zip (data, sums):
for i, rule in enumerate(('proportional', 'even')):
results = []
for j, (ucm, st) in enumerate (
((False, 0.001), (True, 0.001), (True, 0.999))):
res, conv, nnz, time = level(
d, rule=rule, switch_to_sparse_at=st,
use_conv_matrix=ucm, threshold=th)
results.append(res)
times[i, j] += time
assert np.allclose(results[0], results[1])
assert np.allclose(results[1], results[2])
assert np.allclose(results[2], results[0])
assert np.allclose(s, [r.sum() for r in results])
print("""condition {} finished, no obvious errors; runtimes [sec]:
convolution matrix sparse solver
proportional {:13.7f} {:13.7f} {:13.7f}
even {:13.7f} {:13.7f} {:13.7f}
""".format(lb, *tuple(times.ravel())))
def check_convergence(sh=(300, 400), maxiter=100):
data = np.random.random(sh)
res, conv, nnz, time, Eucl = level(data, maxiter=maxiter,
track_Euclidean_deltas=True)
print('nnz:', nnz)
print('delta:', Eucl)
print('final length:', np.sqrt((res*res).sum()))
print('ratio:', Eucl[-1] / np.sqrt((res*res).sum()))