我正在尝试为以下json构建avro模式:
{
"id":1234,
"my_name_field": "my_name",
"extra_data": {
"my_long_value": 1234567890,
"my_message_string": "Hello World!",
"my_int_value": 777,
"some_new_field": 1
}
}
“id”和“my_name_field”的值是已知的,但“extra_data”中的字段会动态更改,并且是未知的。
我想到的avro模式是:
{
"name":"my_record",
"type":"record",
"fields":[
{"name":"id", "type":"int", "default":0},
{"name":"my_name_field", "type":"string", "default":"NoName"},
{ "name":"extra_data", "type":{"type":"map", "values":["null","int","long","string"]} }
]
}
我的第一个想法是使用 map 将'extra_data'记录下来,但这是行不通的:
{ "name":"extra_data", "type":{"type":"map", "values":["null","int","long","string"]} }
我得到:
AvroTypeException: Expected start-union. Got VALUE_NUMBER_INT
apache在https://cwiki.apache.org/confluence/display/Hive/AvroSerDe中给出了一些不错的示例,但似乎没有一个能胜任。
这是我要检查的单元测试:
公共(public)类(class)AvroTest {
@Test
public void readRecord() throws IOException {
String event="{\"id\":1234,\"my_name_field\":\"my_name\",\"extra_data\":{\"my_long_value\":1234567890,\"my_message_string\":\"Hello World!\",\"my_int_value\":777,\"some_new_field\":1}}";
SchemaRegistry<Schema> registry = new com.linkedin.camus.schema.MySchemaRegistry();
DecoderFactory decoderFactory = DecoderFactory.get();
ObjectMapper mapper = new ObjectMapper();
GenericDatumReader<GenericData.Record> reader = new GenericDatumReader<GenericData.Record>();
Schema schema = registry.getLatestSchemaByTopic("record_topic").getSchema();
reader.setSchema(schema);
HashMap hashMap = mapper.readValue(event, HashMap.class);
long now = Long.valueOf(hashMap.get("now").toString())*1000;
GenericData.Record read = reader.read(null, decoderFactory.jsonDecoder(schema, event));
}
希望能对此有所帮助,
谢谢。
最佳答案
如果额外数据字段的列表确实未知,则使用多个可选值字段可能会有所帮助,如下所示:
{
"name":"my_record",
"type":"record",
"fields":[
{"name":"id", "type":"int", "default":0},
{"name":"my_name_field", "type":"string", "default":"NoName"},
{"name":"extra_data", "type": "array", "items": {
{"name": "extra_data_entry", "type":"record", "fields": [
{"name":"extra_data_field_name", "type": "string"},
{"name":"extra_data_field_type", "type": "string"},
{"name":"extra_data_field_value_string", "type": ["null", "string"]},
{"name":"extra_data_field_value_int", "type": ["null", "int"]},
{"name":"extra_data_field_value_long", "type": ["null", "long"]}
]}
}}
]
}
然后,您可以基于该字段的
extra_data_field_value_*
选择extra_data_field_type
值。