library(nlme)
Loblolly$age2 <- as.factor(ifelse(Loblolly$age < 12.5, 0, 1))
在这里,我定义了一个我感兴趣的二进制协变量。
model <- nlme(height ~ (R0) + 1,
data = Loblolly,
fixed = list(R0 ~ 1 + (age2)),
random = list(Seed = pdDiag(list(R0 ~ 1))),
start = list(fixed = c(R0 = -8.5, age2 = 1)))
运行这个给我错误,
Error in nlme.formula(height ~ (R0) + 1, data = Loblolly, fixed = list(R0 ~ :
step halving factor reduced below minimum in PNLS step
更改初始值后,它可以正常工作。
model2 <- nlme(height ~ (R0) + 1,
data = Loblolly,
fixed = list(R0 ~ 1 + (age2)),
random = list(Seed = pdDiag(list(R0 ~ 1))),
start = list(fixed = c(R0 = 0, age2 = 30)), verbose=TRUE)
选择
age2
的起始值有哪些方法?我考虑过使用nls2
拟合非线性最小二乘法模型,但这也需要指定一组起始值。我当时想也许可以绘制数据
height ~ age2
,但是由于age2
是二进制的,所以我不确定该怎么做。 最佳答案
像这样尝试lm
:
fm.lm <- lm(height ~ age2, Loblollly) # modified Loblolly as per question
st <- coef(fm.lm)
names(st)[1] <- "R0"
nlme(height ~ (R0) + 1, data = Loblolly,
fixed = list(R0 ~ 1 + (age2)),
random = list(Seed = pdDiag(list(R0 ~ 1))),
start = list(fixed = st))
给予:
Nonlinear mixed-effects model fit by maximum likelihood
Model: height ~ (R0) + 1
Data: Loblolly
Log-likelihood: -305.1093
Fixed: list(R0 ~ 1 + (age2))
R0.(Intercept) R0.age21
12.96167 36.80548
Random effects:
Formula: R0 ~ 1 | Seed
R0.(Intercept) Residual
StdDev: 0.0002791602 9.145988
Number of Observations: 84
Number of Groups: 14
关于r - 如何在NLME中选择协变量的起始值,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/47057907/