假设我有一个形状为2x3x3的数组,这是一个3D矩阵。我也有一个形状为3x3的2D矩阵,我希望将其用作沿第一轴的3D矩阵的索引。示例如下。
示例运行:
>>> np.random.randint(0,2,(3,3)) # index
array([[0, 1, 0],
[1, 0, 1],
[1, 0, 0]])
>> np.random.randint(0,9,(2,3,3)) # 3D matrix
array([[[4, 4, 5],
[2, 6, 7],
[2, 6, 2]],
[[4, 0, 0],
[2, 7, 4],
[4, 4, 0]]])
>>> np.array([[4,0,5],[2,6,4],[4,6,2]]) # result
array([[4, 0, 5],
[2, 6, 4],
[4, 6, 2]])
最佳答案
看来您正在使用2D
数组作为索引数组和3D
数组来选择值。因此,您可以使用NumPy的 advanced-indexing
-
# a : 2D array of indices, b : 3D array from where values are to be picked up
m,n = a.shape
I,J = np.ogrid[:m,:n]
out = b[a, I, J] # or b[a, np.arange(m)[:,None],np.arange(n)]
如果您打算使用
a
索引到最后一个轴,只需将a
移动到那里:b[I, J, a]
。sample 运行-
>>> np.random.seed(1234)
>>> a = np.random.randint(0,2,(3,3))
>>> b = np.random.randint(11,99,(2,3,3))
>>> a # Index array
array([[1, 1, 0],
[1, 0, 0],
[0, 1, 1]])
>>> b # values array
array([[[60, 34, 37],
[41, 54, 41],
[37, 69, 80]],
[[91, 84, 58],
[61, 87, 48],
[45, 49, 78]]])
>>> m,n = a.shape
>>> I,J = np.ogrid[:m,:n]
>>> out = b[a, I, J]
>>> out
array([[91, 84, 37],
[61, 54, 41],
[37, 49, 78]])