我想在移动时间序列中添加移动平均值计算。
来自Quandl的原始数据
Exchange = Quandl.get("BUNDESBANK/BBEX3_D_SEK_USD_CA_AC_000",
authtoken="xxxxxxx")
# Value
# Date
# 1989-01-02 6.10500
# 1989-01-03 6.07500
# 1989-01-04 6.10750
# 1989-01-05 6.15250
# 1989-01-09 6.25500
# 1989-01-10 6.24250
# 1989-01-11 6.26250
# 1989-01-12 6.23250
# 1989-01-13 6.27750
# 1989-01-16 6.31250
# Calculating Moving Avarage
MovingAverage = pd.rolling_mean(Exchange,5)
# Value
# Date
# 1989-01-02 NaN
# 1989-01-03 NaN
# 1989-01-04 NaN
# 1989-01-05 NaN
# 1989-01-09 6.13900
# 1989-01-10 6.16650
# 1989-01-11 6.20400
# 1989-01-12 6.22900
# 1989-01-13 6.25400
# 1989-01-16 6.26550
我想在
Value
之后使用相同的索引(Date
)将计算出的移动平均值作为新列添加到右侧。最好我还想将计算的移动平均值重命名为MA
。 最佳答案
滚动平均值返回一个Series
,您只需将其添加为DataFrame
(MA
)的新列,如下所述。
有关信息,在较新的 Pandas 版本中不建议使用rolling_mean
函数。我在示例中使用了新方法,请参见下面的pandas documentation引用。
df['MA'] = df.rolling(window=5).mean()
print(df)
# Value MA
# Date
# 1989-01-02 6.11 NaN
# 1989-01-03 6.08 NaN
# 1989-01-04 6.11 NaN
# 1989-01-05 6.15 NaN
# 1989-01-09 6.25 6.14
# 1989-01-10 6.24 6.17
# 1989-01-11 6.26 6.20
# 1989-01-12 6.23 6.23
# 1989-01-13 6.28 6.25
# 1989-01-16 6.31 6.27