我正在使用虹膜数据集使用LightGBM执行多类分类。该代码段如下所示:
from sklearn import datasets
from sklearn.model_selection import train_test_split
import pandas as pd
import numpy as np
from time import time
from sklearn.metrics import r2_score, mean_squared_error
import lightgbm as lgb
iris = datasets.load_iris()
df_features = iris.data
df_dependent = iris.target
x_train,x_test,y_train,y_test = train_test_split(df_features,df_dependent,test_size=0.3, random_state=2)
params = {
'task' : 'train',
'boosting_type' : 'gbdt',
'objective' : 'multiclass',
'metric' : {'multi_logloss'},
'num_leaves' : 63,
'learning_rate' : 0.1,
'feature_fraction' : 0.9,
'bagging_fraction' : 0.9,
'bagging_freq': 0,
'verbose' : 0,
'num_class' : 3
}
lgb_train = lgb.Dataset(x_train, y_train)
lgb_eval = lgb.Dataset(x_test, y_test, reference=lgb_train)
gbm = lgb.train(params,
lgb_train,
num_boost_round=20,
valid_sets=lgb_eval,
early_stopping_rounds=5)
print('Save model...')
# save model to file
gbm.save_model('model.txt')
在model.txt中,我希望number_of_trees等于num_boost_round。但我看到60棵树,这是num_boost_round * num_class这是错误的。
为什么会这样呢?
最佳答案
您可以在lighGBM documentation中看到此注释:
注意:在内部,LightGBM构造num_class * num_iterations树以解决多类分类问题