我正在尝试使用
谷歌dataproc+spark
谷歌大查询
使用spark ml kmeans+pipeline创建作业
具体如下:
在bigquery中创建基于用户级的要素表
示例:要素表的外观
userid |x1 |x2 |x3 |x4 |x5 |x6 |x7 |x8 |x9 |x10
00013 |0.01 | 0 |0 |0 |0 |0 |0 |0.06 |0.09 | 0.001

启动默认设置群集,AM使用gcloud命令行界面创建群集并运行作业,如图所示here
使用提供的启动程序代码,我读取BQ表,将RDD转换为数据帧并传递给KMeans模型/管道:

#!/usr/bin/python
"""BigQuery I/O PySpark example."""
import json
import pprint
import subprocess
import pyspark
import numpy as np
from pyspark.ml.clustering import KMeans
from pyspark import SparkContext
from pyspark.ml import Pipeline
from pyspark.sql import SQLContext
from pyspark.mllib.linalg import Vectors, _convert_to_vector
from pyspark.sql.types import Row
from pyspark.mllib.common import callMLlibFunc, callJavaFunc, _py2java, _java2py
sc = pyspark.SparkContext()

# Use the Google Cloud Storage bucket for temporary BigQuery export data used by the InputFormat.
# This assumes the Google Cloud Storage connector for Hadoop is configured.

bucket = sc._jsc.hadoopConfiguration().get('fs.gs.system.bucket')
project = sc._jsc.hadoopConfiguration().get('fs.gs.project.id')
input_directory ='gs://{}/hadoop/tmp/bigquery/pyspark_input'.format(bucket)
 conf = {# Input Parameters
 'mapred.bq.project.id': project,
 'mapred.bq.gcs.bucket': bucket,
 'mapred.bq.temp.gcs.path': input_directory,
 'mapred.bq.input.project.id': 'my-project',
 'mapred.bq.input.dataset.id': 'tempData',
 'mapred.bq.input.table.id': 'userFeatureInBQ'}

# Load data in from BigQuery.
table_data = sc.newAPIHadoopRDD(
 'com.google.cloud.hadoop.io.bigquery.JsonTextBigQueryInputFormat',
 'org.apache.hadoop.io.LongWritable',
 'com.google.gson.JsonObject',conf=conf)

# Tranform the userid-Feature table into feature_data RDD
 feature_data = (
 table_data
  .map(lambda (_, record): json.loads(record))
  .map(lambda   x:(x['x0'],x['x1'],x['x2'],x['x3'],x['x4'],
                  x['x5'],x['x6'],x['x7'],x['x8'],
                  x['x9'],x['x10'])))

# Function to convert each line in RDD into an array, return the vector
  def parseVector(values):
     array = np.array([float(v) for v in values])
     return _convert_to_vector(array)

# Convert the RDD into a row wise RDD
  data = feature_data.map(parseVector)
  row_rdd = data.map(lambda x: Row(x))

sqlContext = SQLContext(sc)

# cache the RDD to improve performance
row_rdd.cache()

# Create a Dataframe
df = sqlContext.createDataFrame(row_rdd, ["features"])

# cache the Dataframe
df.cache()

下面是我打印到控制台的schema和head():
|-- features: vector (nullable = true)
[Row(features=DenseVector([0.01,0,0,0,0,0,0,0.06,0.09,0.001]))]

按以下方式运行集群kmeans算法
多次运行模型
使用不同的参数(即更改群集和初始模式)
计算误差或成本度量
选择最佳模型参数组合
使用kmeans作为估计器创建管道
使用paramMap传递多个参数
#Define the paramMap & model
paramMap = ({'k':3,'initMode':'kmeans||'},{'k':3,'initMode':'random'},
  {'k':4,'initMode':'kmeans||'},{'k':4,'initMode':'random'},
  {'k':5,'initMode':'kmeans||'},{'k':5,'initMode':'random'},
  {'k':6,'initMode':'kmeans||'},{'k':6,'initMode':'random'},
  {'k':7,'initMode':'kmeans||'},{'k':7,'initMode':'random'},
  {'k':8,'initMode':'kmeans||'},{'k':8,'initMode':'random'},
  {'k':9,'initMode':'kmeans||'},{'k':9,'initMode':'random'},
  {'k':10,'initMode':'kmeans||'},{'k':10,'initMode':'random'})

 km = KMeans()

 # Create a Pipeline with estimator stage
 pipeline = Pipeline(stages=[km])

 # Call & fit the pipeline with the paramMap
 models = pipeline.fit(df, paramMap)`
 print models

我得到了下面的输出
7:03:24 WARN org.apache.spark.mllib.clustering.KMeans: The input data was not directly cached, which may hurt performance if its parent RDDs are also uncached.[PipelineModel_443dbf939b7bd3bf7bfc, PipelineModel_4b64bb761f4efe51da50, PipelineModel_4f858411ac19beacc1a4, PipelineModel_4f58b894f1d14d79b936, PipelineModel_4b8194f7a5e6be6eaf33, PipelineModel_4fc5b6370bff1b4d7dba, PipelineModel_43e0a196f16cfd3dae57, PipelineModel_47318a54000b6826b20e, PipelineModel_411bbe1c32db6bf0a92b, PipelineModel_421ea1364d8c4c9968c8, PipelineModel_4acf9cdbfda184b00328, PipelineModel_42d1a0c61c5e45cdb3cd, PipelineModel_4f0db3c394bcc2bb9352, PipelineModel_441697f2748328de251c, PipelineModel_4a64ae517d270a1e0d5a, PipelineModel_4372bc8db92b184c05b0]
#Print the cluster centers:
for model in models:
    print vars(model)
    print model.stages[0].clusterCenters()
    print model.extractParamMap()

输出:
[array([7.64676638e-07, 3.58531391e-01, 1.68879698e-03, 0.00000000e+00, 1.53477043e-02, 1.25822915e-02, 0.00000000e+00, 6.93060772e-07, 1.41766847e-03, 1.60941306e-02], array([2.36494105e-06, 1.87719732e-02, 3.73829379e-03, 0.00000000e+00, 4.20724542e-02, 2.28675684e-02, 0.00000000e+00, 5.45002249e-06, 1.17331153e-02, 1.24364600e-02])
这里是问题列表,需要帮助:
我得到了一个列表,其中只有2个集群中心作为所有模型的阵列,
当我试图访问管道时,kmeans模型似乎默认为k=2?为什么会这样?
最后一个循环应该访问pipelinemodel和第0个stage并运行clusterCenter()方法?这是正确的方法吗?
为什么会出现数据未缓存的错误?
在使用管道时,我找不到如何计算wssse或任何类似的方法,如.computeCost()(对于mllib)?如何根据不同的参数比较不同的模型?
我尝试了以下代码来运行源代码here中定义的.computeCost方法:
这违背了使用管道并行运行KMeans模型和模型选择的目的,但是我尝试了以下代码:
#computeError
def computeCost(model, rdd):`
"""Return the K-means cost (sum of squared distances of
 points to their nearest center) for this model on the given data."""
    cost = callMLlibFunc("computeCostKmeansModel",
                          rdd.map(_convert_to_vector),
               [_convert_to_vector(c) for c in model.clusterCenters()])
    return cost

cost= np.zeros(len(paramMap))

for i in range(len(paramMap)):
    cost[i] = cost[i] + computeCost(model[i].stages[0], feature_data)
print cost

这将在循环的末尾打印出以下内容:
[ 634035.00294687 634035.00294687 634035.00294687 634035.00294687 634035.00294687 634035.00294687 634035.00294687 634035.00294687 634035.00294687 634035.00294687 634035.00294687 634035.00294687 634035.00294687 634035.00294687 634035.00294687 634035.00294687]
每种型号计算的成本/误差相同吗同样无法使用正确的参数访问管道模型。
非常感谢您的帮助/指导!谢谢!

最佳答案

您的参数定义不正确。它应该从特定参数映射到值,而不是从任意名称映射您将得到k等于2,因为您传递的参数没有被使用,并且每个模型使用完全相同的默认参数。
让我们从示例数据开始:

import numpy as np
from pyspark.mllib.linalg import Vector

df = (sc.textFile("data/mllib/kmeans_data.txt")
  .map(lambda s: Vectors.dense(np.fromstring(s, dtype=np.float64, sep=" ")))
  .zipWithIndex()
  .toDF(["features", "id"]))

以及aPipeline
from pyspark.ml.clustering import KMeans
from pyspark.ml import Pipeline

km = KMeans()

pipeline = Pipeline(stages=[km])

如上所述,参数映射应该使用特定的参数作为键例如:
params = [
    {km.k: 2, km.initMode: "k-means||"},
    {km.k: 3, km.initMode: "k-means||"},
    {km.k: 4, km.initMode: "k-means||"}
]

models = pipeline.fit(df, params=params)

assert [len(m.stages[0].clusterCenters()) for m in models] == [2, 3, 4]

笔记:
k-means的正确initModek-means||不是kmeans||
在流水线中使用参数映射并不意味着模型是并行训练的spark通过数据而不是参数并行化训练过程。这不过是一种方便的方法。
因为K-Means的实际输入不是DataFrame而是转换的RDD,所以会收到关于未缓存数据的警告。

09-26 18:21