所以我一直在从事这个聊天机器人项目,我正在使用SVM作为它的ML,我真的想使用余弦相似度作为内核。我曾尝试使用pykernel(as suggested from this post)或其他来源的其他代码,但仍然无法正常工作,我也不知道为什么...
说我有这样的train.py
代码
from sklearn.feature_extraction.text import TfidfVectorizer
import numpy as np
import pickle, csv, json, timeit, random, os, nltk
from nltk.stem.lancaster import LancasterStemmer
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split as tts
from sklearn.preprocessing import LabelEncoder as LE
from Sastrawi.Stemmer.StemmerFactory import StemmerFactory
from Sastrawi.StopWordRemover.StopWordRemoverFactory import StopWordRemoverFactory
import my_kernel
def preprocessing(text):
factory1 = StopWordRemoverFactory()
StopWord = factory1.create_stop_word_remover()
text = StopWord.remove(text)
factory2 = StemmerFactory()
stemmer = factory2.create_stemmer()
return (stemmer.stem(text))
le = LE()
tfv = TfidfVectorizer(min_df=1)
file = os.path.join(os.path.dirname(os.path.abspath(__file__)),"scraping","tes.json")
svm_pickle_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),"data","svm_model.pickle")
if os.path.exists(svm_pickle_path):
os.remove(svm_pickle_path)
tit = [] # Title
cat = [] # Category
post = [] # Post
with open(file, "r") as sentences_file:
reader = json.load(sentences_file)
for row in reader:
tit.append(preprocessing(row["Judul"]))
cat.append(preprocessing(row["Kategori"]))
post.append(preprocessing(row["Post"]))
tfv.fit(tit)
le.fit(cat)
features = tfv.transform(tit)
labels = le.transform(cat)
trainx, testx, trainy, testy = tts(features, labels, test_size=.30, random_state=42)
model = SVC(kernel=my_kernel, C=1.5)
f = open(svm_pickle_path, 'wb')
pickle.dump(model.fit(trainx, trainy), f)
f.close()
print("SVC training score:", model.score(testx, testy))
with open(svm_pickle_path, 'rb') as file:
pickle_model = pickle.load(file)
score = pickle_model.score(testx, testy)
print("Test score: {0:.2f} %".format(100 * score))
Ypredict = pickle_model.predict(testx)
print(Ypredict)
对于
my_kernel.py
代码:import numpy as np
import math
from numpy import linalg as LA
def my_kernel(X, Y):
norm = LA.norm(X) * LA.norm(Y)
return np.dot(X, Y.T)/norm
每次我运行程序时都会显示
Traceback (most recent call last):
File "F:\env\chatbot\chatbotProj\chatbotProj\train.py", line 84, in <module>
pickle.dump(model.fit(trainx, trainy), f)
File "F:\env\lib\site-packages\sklearn\svm\base.py", line 212, in fit
fit(X, y, sample_weight, solver_type, kernel, random_seed=seed)
File "F:\env\lib\site-packages\sklearn\svm\base.py", line 252, in _dense_fit
X = self._compute_kernel(X)
File "F:\env\lib\site-packages\sklearn\svm\base.py", line 380, in _compute_kernel
kernel = self.kernel(X, self.__Xfit)
File "F:\env\chatbot\chatbotProj\chatbotProj\ChatbotCode\svm.py", line 31, in my_kernel
norm = LA.norm(X) * LA.norm(Y)
File "F:\env\lib\site-packages\numpy\linalg\linalg.py", line 2359, in norm
sqnorm = dot(x, x)
File "F:\env\lib\site-packages\scipy\sparse\base.py", line 478, in __mul__
raise ValueError('dimension mismatch')
ValueError: dimension mismatch
我是python和SVM领域的新手,有人知道这是什么问题吗,或者可以推荐我如何更好,更干净地编写余弦相似性内核?
哦,根据
train_test_split
sklearn,火车X的尺寸为(193,634),火车Y为(193,),测试X为(83,634),测试Y为(83,)。 最佳答案
更新:
我的朋友告诉我发生这种情况是因为我的稀疏矩阵不是一个简单的数组,因此我必须将其密集化并替换my_kernel.py
代码以使它像这样
def my_kernel(X, Y):
X=np.array(X.todense())
Y=np.array(Y.todense())
norm = LA.norm(X) * LA.norm(Y)
return np.dot(X, Y.T)/norm