我的程序存在一些问题,目前它在寻找会合点时给出了错误的结果。
我选择使用 geometric median 算法搜索交汇点,如here所述。

我还实现了蛮力算法,只是为了比较结果。

源代码已编辑为可能的解决方案,请纠正我,对于> 100000点,有时不起作用:

  #include <vector>
#include <random>
#include <cstdlib>
#include <algorithm>
#include <iostream>
#include <cmath>
using namespace std;
long double ComputeMean(vector<long long> InputData) {
    long double rtn = 0;
    for (unsigned int i = 0; i < InputData.size(); i++) {
            rtn += InputData[i];
    }
    if(rtn == 0) return rtn;
    return rtn/InputData.size();
}
long double CallRecursiveAverage(long double m0, vector<long long> X)  {
    long double m1 =0 ;
    long double numerator = 0, denominator = 0;
    for (unsigned int i = 0; i < X.size(); i++)  {
        long double temp =abs((X[i] - m0));
        if(X[i]!=0 && temp!=0) {
                numerator += X[i] / temp;
        }
        if(temp!=0) {
            denominator += 1 / temp;
        }
    }
    if( denominator != 0 ) {
        m1 = numerator / denominator;
    }
    return m1;
}
long double ComputeReWeightedAverage(vector<long long> InputVector)  {
    long double m0 = ComputeMean(InputVector);
    long double m1 = CallRecursiveAverage(m0, InputVector);
    while (abs(m1 - m0) > 1e-6) {
        m0 = m1;
        m1 = CallRecursiveAverage(m0, InputVector);
    }
    return m1;
}
int randomizer(){
    int n =(rand() % 1000000 + 1)*(-1 + ((rand() & 1) << 1));
    return(n);
}

struct points
{
    long double ch;
    long long remp;
    bool operator<(const points& a) const
    {
                 return ch < a.ch;
    }
};
int main () {
    long double houses=10;
//    rand() % 100 + 1;
//    cin >> houses;
    vector <long long> x;
    vector <long long> y;
    vector <long long> xr;
    vector <long long> yr;
    vector <long long> sums;
    vector <long long> remp;
    long long x0, y0;
    long double path = 1e9;
    long double sumy = 0;
    long double sumx = 0;
    long double avgx = 1;
    long double avgy = 1;
     srand((unsigned)time(NULL));
    int rnd;
    for(int i = 0; i < houses; i++) {
//        cin>>x0>>y0;
        x0 =  randomizer();
            x.push_back(x0);
            sumx += x0;
         y0  =  randomizer();
            y.push_back(y0);
            sumy += y0;
            }

if(sumx!=0)     {
    avgx=ComputeReWeightedAverage(x);
    } else {
    avgx=0;
    }
if(sumy!=0)     {
    avgy=ComputeReWeightedAverage(y);
        } else {
    avgy=0;
    }
    long double  check=1e9;
    long double  pathr=0;
    int rx, ry;
    long double  wpath=1e9;
    ///brute force////
    for(int j = 0; j < houses; j++) {
        pathr = 0;
        for(int i = 0; i < houses; i++) {
            pathr += max(abs(x[i] - x[j]), abs(y[i] - y[j]));
            }
            if(pathr<wpath)
            {
                wpath = pathr;
                ry=j;
            }
        }
    cout << "\nx ="<<x[ry]<<"\n";
    cout << "y ="<<y[ry]<<"\n";
    cout << "bruteForce path ="<<wpath<<"\n\n";
    ////end brute force///
    cout << "avgx ="<<avgx<<"\n";
    cout << "avgy ="<<avgy<<"\n";
    vector<points> ch;
    for(int j = 0; j < houses; j++) {
            remp.push_back(j);
            points tb;
            tb.ch=max(abs(x[j] - (avgx)), abs(y[j] - (avgy)));
            tb.remp=j;
            ch.push_back(tb) ;
        }
            sort(ch.begin(),ch.end());
    path =1e9;
    for(unsigned int z = 0; z < 10; z++) {
    pathr = 0;

    for(int i = 0; i < houses; i++) {
            pathr += max(abs(x[i] - x[ch[z].remp]), abs(y[i] - y[ch[z].remp]));
            }
            if(pathr<path)
            {
                path = pathr;
            }
    }
    cout << "x ="<<x[remp[0]]<<"\n";
    cout << "y ="<<y[remp[0]]<<"\n";
    cout << "Weizsfield path ="<<path<<"\n\n";
    if (wpath!=path){ cout <<"ERRROR"<<"\n";
    cout << "dots\n";
    for(int i = 0; i < houses; i++) {
        cout << x[i]<<"  "<<y[i]<<"\n";
    }
        cout << "dots\n\n";
    }
    return 0;
}

我的程序在哪里出错?任何帮助将不胜感激。

编辑
将最近的点的搜索半径更改为几何中位数并检查所有路径的路径是否是最佳方法?如果答案是肯定的,我如何找到最佳的起始半径?

最佳答案

Weiszfeld算法是一种近似几何中值的算法,因此通常会与通过蛮力计算的真实算法有所偏差。

增大搜索半径可能会有所帮助。

10-08 03:51