我对如何尽可能快地以numpy计算距离有疑问,
def getR1(VVm,VVs,HHm,HHs):
t0=time.time()
R=VVs.flatten()[numpy.newaxis,:]-VVm.flatten()[:,numpy.newaxis]
R*=R
R1=HHs.flatten()[numpy.newaxis,:]-HHm.flatten()[:,numpy.newaxis]
R1*=R1
R+=R1
del R1
print "R1\t",time.time()-t0, R.shape, #11.7576191425 (108225, 10500)
print numpy.max(R) #4176.26290975
# uses 17.5Gb ram
return R
def getR2(VVm,VVs,HHm,HHs):
t0=time.time()
precomputed_flat = numpy.column_stack((VVs.flatten(), HHs.flatten()))
measured_flat = numpy.column_stack((VVm.flatten(), HHm.flatten()))
deltas = precomputed_flat[None,:,:] - measured_flat[:, None, :]
#print time.time()-t0, deltas.shape # 5.861109972 (108225, 10500, 2)
R = numpy.einsum('ijk,ijk->ij', deltas, deltas)
print "R2\t",time.time()-t0,R.shape, #14.5291359425 (108225, 10500)
print numpy.max(R) #4176.26290975
# uses 26Gb ram
return R
def getR3(VVm,VVs,HHm,HHs):
from numpy.core.umath_tests import inner1d
t0=time.time()
precomputed_flat = numpy.column_stack((VVs.flatten(), HHs.flatten()))
measured_flat = numpy.column_stack((VVm.flatten(), HHm.flatten()))
deltas = precomputed_flat[None,:,:] - measured_flat[:, None, :]
#print time.time()-t0, deltas.shape # 5.861109972 (108225, 10500, 2)
R = inner1d(deltas, deltas)
print "R3\t",time.time()-t0, R.shape, #12.6972110271 (108225, 10500)
print numpy.max(R) #4176.26290975
#Uses 26Gb
return R
def getR4(VVm,VVs,HHm,HHs):
from scipy.spatial.distance import cdist
t0=time.time()
precomputed_flat = numpy.column_stack((VVs.flatten(), HHs.flatten()))
measured_flat = numpy.column_stack((VVm.flatten(), HHm.flatten()))
R=spdist.cdist(precomputed_flat,measured_flat, 'sqeuclidean') #.T
print "R4\t",time.time()-t0, R.shape, #17.7022118568 (108225, 10500)
print numpy.max(R) #4176.26290975
# uses 9 Gb ram
return R
def getR5(VVm,VVs,HHm,HHs):
from scipy.spatial.distance import cdist
t0=time.time()
precomputed_flat = numpy.column_stack((VVs.flatten(), HHs.flatten()))
measured_flat = numpy.column_stack((VVm.flatten(), HHm.flatten()))
R=spdist.cdist(precomputed_flat,measured_flat, 'euclidean') #.T
print "R5\t",time.time()-t0, R.shape, #15.6070930958 (108225, 10500)
print numpy.max(R) #64.6240118667
# uses only 9 Gb ram
return R
def getR6(VVm,VVs,HHm,HHs):
from scipy.weave import blitz
t0=time.time()
R=VVs.flatten()[numpy.newaxis,:]-VVm.flatten()[:,numpy.newaxis]
blitz("R=R*R") # R*=R
R1=HHs.flatten()[numpy.newaxis,:]-HHm.flatten()[:,numpy.newaxis]
blitz("R1=R1*R1") # R1*=R1
blitz("R=R+R1") # R+=R1
del R1
print "R6\t",time.time()-t0, R.shape, #11.7576191425 (108225, 10500)
print numpy.max(R) #4176.26290975
return R
结果出现在以下时间:
R1 11.7737319469 (108225, 10500) 4909.66881791
R2 15.1279799938 (108225, 10500) 4909.66881791
R3 12.7408981323 (108225, 10500) 4909.66881791
R4 17.3336868286 (10500, 108225) 4909.66881791
R5 15.7530870438 (10500, 108225) 70.0690289494
R6 11.670968771 (108225, 10500) 4909.66881791
虽然最后一个给出的是sqrt((VVm-VVs)^ 2 +(HHm-HHs)^ 2),而其他的给出的是(VVm-VVs)^ 2 +(HHm-HHs)^ 2,但这并不是很重要,因为否则在我的代码中,我将为每个i取R [i ,:]的最小值,而sqrt无论如何都不会影响最小值(并且,如果我对距离感兴趣,我只需取sqrt(value)即可)在整个阵列上执行sqrt的操作,因此确实没有时序差异。
问题仍然存在:第一个解决方案为什么是最好的(第二个和第三个解决方案较慢的原因是因为deltas = ...花费了5.8秒的时间(这也是这两个方法花费26Gb的原因)),为什么是欧几里得比欧几里得慢?
squclidean应该只做(VVm-VVs)^ 2 +(HHm-HHs)^ 2,而我认为它做的事情有所不同。有人知道如何找到该方法的源代码(C或底部的任何内容)吗?我认为它确实sqrt((VVm-VVs)^ 2 +(HHm-HHs)^ 2)^ 2(我能想到为什么它会比(VVm-VVs)^ 2 +(HHm-HHs)慢的唯一原因^ 2-我知道这是一个愚蠢的原因,有人有一个更合乎逻辑的理由吗?)
既然我对C一无所知,我该如何用scipy.weave内联?并且该代码是否可以像您使用python一样正常编译?还是我需要为此安装特殊的东西?
编辑:好的,我尝试了scipy.weave.blitz,(R6方法),并且速度稍快一些,但是我认为知道C比我高的人仍然可以提高速度吗?我只是采用了形式为a + = b或* =的行,并查看它们在C中的状态,然后将它们放入blitz语句中,但是我想我是否将其中带有flatten和newaxis的语句放在行中同样,C也应该更快一些,但是我不知道该怎么做(知道C的人可能会解释吗?)。现在, Blitz 的东西和我的第一种方法之间的差异还不够大,无法真正由C vs numpy引起吗?
我猜想像deltas = ...这样的其他方法也可以快得多,当我将其放在C中时?
最佳答案
每当您有乘法和和时,请尝试使用点乘积函数或np.einsum
之一。由于您要预先分配数组,而不是为水平和垂直坐标使用不同的数组,因此将它们堆叠在一起:
precomputed_flat = np.column_stack((svf.flatten(), shf.flatten()))
measured_flat = np.column_stack((VVmeasured.flatten(), HHmeasured.flatten()))
deltas = precomputed_flat - measured_flat[:, None, :]
从这里开始,最简单的方法是:
dist = np.einsum('ijk,ijk->ij', deltas, deltas)
您也可以尝试类似的方法:
from numpy.core.umath_tests import inner1d
dist = inner1d(deltas, deltas)
当然也有SciPy的空间模块
cdist
:from scipy.spatial.distance import cdist
dist = cdist(precomputed_flat, measured_flat, 'euclidean')
编辑
我无法在如此大的数据集上运行测试,但这些时间颇具启发性:
len_a, len_b = 10000, 1000
a = np.random.rand(2, len_a)
b = np.random.rand(2, len_b)
c = np.random.rand(len_a, 2)
d = np.random.rand(len_b, 2)
In [3]: %timeit a[:, None, :] - b[..., None]
10 loops, best of 3: 76.7 ms per loop
In [4]: %timeit c[:, None, :] - d
1 loops, best of 3: 221 ms per loop
对于上述较小的数据集,通过在内存中以不同的方式排列数据,我可以使用
scipy.spatial.distance.cdist
略微加快您的方法,并将其与inner1d
进行匹配:precomputed_flat = np.vstack((svf.flatten(), shf.flatten()))
measured_flat = np.vstack((VVmeasured.flatten(), HHmeasured.flatten()))
deltas = precomputed_flat[:, None, :] - measured_flat
import scipy.spatial.distance as spdist
from numpy.core.umath_tests import inner1d
In [13]: %timeit r0 = a[0, None, :] - b[0, :, None]; r1 = a[1, None, :] - b[1, :, None]; r0 *= r0; r1 *= r1; r0 += r1
10 loops, best of 3: 146 ms per loop
In [14]: %timeit deltas = (a[:, None, :] - b[..., None]).T; inner1d(deltas, deltas)
10 loops, best of 3: 145 ms per loop
In [15]: %timeit spdist.cdist(a.T, b.T)
10 loops, best of 3: 124 ms per loop
In [16]: %timeit deltas = a[:, None, :] - b[..., None]; np.einsum('ijk,ijk->jk', deltas, deltas)
10 loops, best of 3: 163 ms per loop