我有一个问题:
cv::FlannBasedMatcher
使用knnMatch方法更精确。
我的程序将IplImage *和IplImage *作为输入,然后检测出一张脸,然后将其切开,并将建立的脸与存储在计算机中的图像进行比较。如果我的匹配度超过10,它将在标准输出Match中写入。
加载的图像不是灰度图像。那重要吗?
我的问题是,它可以正常工作,但随机时间范围为1分钟到3分钟或更多或更少。
错误消息始终显示在knnMatch方法上。它们在这里(请注意,每次只有一个):
OpenCV Error: Assertion failed ((globalDescIdx>=0) && (globalDescIdx < size())) in getLocalIdx, file /opt/local/var/macports/build/_opt_mports_dports_graphics_opencv/opencv/work/opencv- 2.4.9/modules/features2d/src/matchers.cpp, line 163
libc++abi.dylib: terminating with uncaught exception of type cv::Exception: /opt/local/var/macports/build/_opt_mports_dports_graphics_opencv/opencv/work/opencv-2.4.9/modules/features2d/src/matchers.cpp:163: error: (-215) (globalDescIdx>=0) && (globalDescIdx < size()) in function getLocalIdx
我不明白为什么会抛出此异常...
这是我的代码:
int DroneCV::matchFaces()
{
std::vector<cv::KeyPoint> keypointsO;
std::vector<cv::KeyPoint> keypointsS;
cv::Mat descriptors_object, descriptors_scene;
cv::Mat foundFaces(this->_faceCut);
cv::FlannBasedMatcher matcher;
std::vector<std::vector<cv::DMatch>> matches;
std::vector<cv::DMatch> good_matches;
cv::SurfDescriptorExtractor extractor;
cv::SurfFeatureDetector surf(this->_minHessian);
surf.detect(foundFaces,keypointsS);
surf.detect(this->_faceToRecognize,keypointsO);
if (!this->_faceToRecognize.data || !foundFaces.data)
{
this->log("Fail to init data in DronceCV::matchFaces");
return (0);
}
extractor.compute(foundFaces, keypointsS, descriptors_scene);
extractor.compute(this->_faceToRecognize, keypointsO, descriptors_object);
if(descriptors_scene.empty())//descriptors_scene.type()!=CV_32F)
{
this->log("Descriptor got wrong type");
descriptors_scene.convertTo(descriptors_scene, CV_32F);
return 0;
}
if(descriptors_object.type()!=CV_32F || descriptors_scene.type()!=CV_32F)
{
this->log("TYPE OBJECT " + std::to_string(descriptors_object.type()));
this->log("TYPE SCENE " + std::to_string(descriptors_scene.type()));
return (0);
}
//Both image must be in grayscale ???
try {
matcher.knnMatch( descriptors_object, descriptors_scene, matches, 5 ); // find the 2 nearest neighbors
} catch (cv::Exception e) {
this->log(e.err);
}
good_matches.reserve(matches.size());
for (size_t i = 0; i < matches.size(); ++i)
{
if (matches[i].size() < 2)
continue;
const cv::DMatch &m1 = matches[i][0];
const cv::DMatch &m2 = matches[i][1];
if(m1.distance <= this->_nndrRatio * m2.distance)
good_matches.push_back(m1);
}
this->log("Number of good matches" + std::to_string(good_matches.size()));
foundFaces.release();
if (good_matches.size() > 8)
return (1);
else
return (0);
}
void DroneCV::analyzeFrame(IplImage *img)
{
if (!img)
{
this->log("Frame empty");
return;
}
if (this->detectFaces(img) == 1)
{
if (this->matchFaces() == 1)
{
this->log("Matched");
cvReleaseImage(&this->_faceCut);
}
}
}
在此先感谢您的帮助
最佳答案
我也被困住了,花了我将近3-4个小时才弄清楚了。应用knn match时,请确保测试图像和查询图像中的要素数量均大于或等于knn match中最近的邻居数量。
例如,我们有以下代码:
Mat img1,img2,desc1,desc2;
vector<KeyPoint> kpt1,kpt2;
FAST(img1,kpt1,30,true) ;
FAST(img2,kpt1,30,true) ;
SurfDescriptorExtractor sfdesc1,sfdesc2;
sfdesc1.compute(img1,kpt1,desc1);
sfdesc2.compute(img2,kpt2,desc2);
FlannBasedMatcher matcher;
vector< vector<DMatch> > matches1,matches2;
matcher.knnMatch(desc1,desc2,matches1,2);
此代码将返回异常,如帖子中所示,只需修改代码,如下所示:
if(kpt1.size()>=2 && kpt2.size()>=2)
matcher.knnMatch(desc1,desc2,matches1,2);
这种方法对我有用..!
关于c++ - Opencv基于Flann的匹配器,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/25089393/