我在数据集中有一组变量-我想简单地计算所有这些变量的运行总计(以及运行平均值),这些数据基于前几年所有的。
为了显示。这就是我的数据的样子,包括我想生成的总运行变量。country year X1 X2 X3 X4 X5 running_total
Bahamas 1990 0 0 0 0 1 NA
Bahamas 1991 0 0 1 1 0 1
Bahamas 1992 1 1 0 0 1 3
Bahamas 1993 0 0 0 0 0 6
Bahamas 1994 1 1 0 1 1 6
Bahamas 1995 0 0 1 0 0 10
Bahamas 1996 0 1 0 1 0 11
Bahamas 1997 1 0 1 0 1 13
Bahamas 1998 0 1 0 1 0 16
Bahamas 1999 1 0 1 0 1 18
Bahamas 2000 0 1 0 1 0 21
Bahamas 2001 1 0 1 0 1 23
Bahamas 2002 0 1 0 1 0 26
Bahamas 2003 1 0 0 0 1 28
Bahamas 2004 0 0 0 1 0 30
Bahamas 2005 1 1 0 0 0 31
Bahamas 2006 0 0 1 1 1 33
Bahamas 2007 1 0 0 0 0 36
Bahamas 2008 0 0 1 1 1 37
Bahamas 2009 1 1 0 0 0 40
Bahamas 2010 0 0 1 1 1 42
Bahamas 2011 1 1 0 0 0 45
Bolivia 1990 0 0 0 0 0 NA
Bolivia 1991 0 0 1 1 0 0
Bolivia 1992 0 0 0 0 0 2
Bolivia 1993 0 0 1 0 0 2
Bolivia 1994 0 0 0 0 0 3
Bolivia 1995 0 0 0 0 0 3
Bolivia 1996 0 0 0 0 0 3
Bolivia 1997 0 0 0 0 0 3
Bolivia 1998 0 0 0 0 0 3
Bolivia 1999 0 0 0 0 0 3
Bolivia 2000 0 1 0 1 0 3
Bolivia 2001 0 0 0 0 0 5
Bolivia 2002 0 0 0 0 0 5
Bolivia 2003 0 0 0 0 0 5
Bolivia 2004 0 0 0 0 0 5
Bolivia 2005 0 0 0 0 0 5
Bolivia 2006 0 0 0 0 0 5
Bolivia 2007 0 0 0 0 0 5
Bolivia 2008 0 0 0 0 1 5
Bolivia 2009 0 0 0 0 0 6
Bolivia 2010 0 0 0 0 1 6
Bolivia 2011 0 0 0 0 0 7
从1990年开始== NA。例如,1991年的运行总计基于1990。1992年的运行总计基于1990-1991。 1993年的总计基于1990-1992年-1994年的总计基于1990-1993年。依此类推...直到2011年。然后,它对新国家B开始相同的程序。
我在下面尝试了以下代码,但它无法按我想要的方式工作。当然,我需要更好地指定它,但是如何呢?DF$csum <- ave(DF$X1, DF$X2,DF$X3,DF$X4,DF$X5,FUN=cumsum)
另外,我想基于相同的逻辑生成运行平均值。
在这里的任何帮助将不胜感激!
结构(列表(国家=结构(c(1L,1L,1L,1L,1L,1L,1L,1L,
1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,2L,2L,2L,
2L,2L,2L,2L,2L,2L,2L,2L,2L,2L,2L,2L,2L,2L,2L,2L,2L,
2L,2L),.Label = c(“Bahamas”,“Bolivia”),class =“factor”),
年= c(1990L,1991L,1992L,1993L,1994L,1995L,1996L,
1997L,1998L,1999L,2000L,2001L,2002L,2003L,2004L,2005L,
2006L,2007L,2008L,2009L,2010L,2011L,1990L,1991L,1992L,
1993L,1994L,1995L,1996L,1997L,1998L,1999L,2000L,2001L,
2002L,2003L,2004L,2005L,2006L,2007L,2008L,2009L,2010L,
2011L),X1 = c(0L,0L,1L,0L,1L,0L,0L,1L,0L,1L,0L,
1L,0L,1L,0L,1L,0L,1L,0L,1L,0L,1L,0L,0L,0L,0L,
0L,0L,0L,0L,0L,0L,0L,0L,0L,0L,0L,0L,0L,0L,0L,
0L,0L,0L),X2 = c(0L,0L,1L,0L,1L,0L,1L,0L,1L,0L,
1L,0L,1L,0L,0L,1L,0L,0L,0L,1L,0L,1L,0L,0L,0L,
0L,0L,0L,0L,0L,0L,0L,1L,0L,0L,0L,0L,0L,0L,0L,
0L,0L,0L,0L),X3 = c(0L,1L,0L,0L,0L,1L,0L,1L,0L,
1L,0L,1L,0L,0L,0L,0L,1L,0L,1L,0L,1L,0L,0L,1L,
0L,1L,0L,0L,0L,0L,0L,0L,0L,0L,0L,0L,0L,0L,0L,
0L,0L,0L,0L,0L),X4 = c(0L,1L,0L,0L,1L,0L,1L,0L,
1L,0L,1L,0L,1L,0L,1L,0L,1L,0L,1L,0L,1L,0L,0L,
1L,0L,0L,0L,0L,0L,0L,0L,0L,1L,0L,0L,0L,0L,0L,
0L,0L,0L,0L,0L,0L),X5 = c(1L,0L,1L,0L,1L,0L,0L,
1L,0L,1L,0L,1L,0L,1L,0L,0L,1L,0L,1L,0L,1L,0L,
0L,0L,0L,0L,0L,0L,0L,0L,0L,0L,0L,0L,0L,0L,0L,
0L,0L,0L,1L,0L,1L,0L),running_total = c(NA,1L,3L,
6L,6L,10L,11L,13L,16L,18L,21L,23L,26L,28L,30L,
31L,33L,36L,37L,40L,42L,45L,NA,0L,2L,2L,3L,3L,
3L,3L,3L,3L,3L,5L,5L,5L,5L,5L,5L,5L,5L,6L,6L,
7L)),. Names = c(“国家/地区”,“年份”,“X1”,“X2”,“X3”,“X4”,“X5”,“running_total”),类=“data.frame”, row.names = c(NA,
-44L))
最佳答案
library(data.table)
setDT(df)
df[, xt := X1+X2+X3+X4+X5]
df[, rt2 := shift(cumsum(xt)), by = country]
实际上,可以通过单线解决:
df[, rt3 := {xt=X1+X2+X3+X4+X5; shift(cumsum(xt))}, by = country]
# Or as Ryan points out:
df[, rt2 := shift(cumsum(Reduce(`+`, .SD))) , by = country , .SDcols = grep('^X.*', names(df), value = T)]
全部导致:
country year X1 X2 X3 X4 X5 running_total xt rt2
1: Bahamas 1990 0 0 0 0 1 NA 1 NA
2: Bahamas 1991 0 0 1 1 0 1 2 1
3: Bahamas 1992 1 1 0 0 1 3 3 3
4: Bahamas 1993 0 0 0 0 0 6 0 6
5: Bahamas 1994 1 1 0 1 1 6 4 6
6: Bahamas 1995 0 0 1 0 0 10 1 10
7: Bahamas 1996 0 1 0 1 0 11 2 11
8: Bahamas 1997 1 0 1 0 1 13 3 13
9: Bahamas 1998 0 1 0 1 0 16 2 16
10: Bahamas 1999 1 0 1 0 1 18 3 18
11: Bahamas 2000 0 1 0 1 0 21 2 21
12: Bahamas 2001 1 0 1 0 1 23 3 23
13: Bahamas 2002 0 1 0 1 0 26 2 26
14: Bahamas 2003 1 0 0 0 1 28 2 28
15: Bahamas 2004 0 0 0 1 0 30 1 30
16: Bahamas 2005 1 1 0 0 0 31 2 31
17: Bahamas 2006 0 0 1 1 1 33 3 33
18: Bahamas 2007 1 0 0 0 0 36 1 36
19: Bahamas 2008 0 0 1 1 1 37 3 37
20: Bahamas 2009 1 1 0 0 0 40 2 40
21: Bahamas 2010 0 0 1 1 1 42 3 42
22: Bahamas 2011 1 1 0 0 0 45 2 45
23: Bolivia 1990 0 0 0 0 0 NA 0 NA
24: Bolivia 1991 0 0 1 1 0 0 2 0
25: Bolivia 1992 0 0 0 0 0 2 0 2
26: Bolivia 1993 0 0 1 0 0 2 1 2
27: Bolivia 1994 0 0 0 0 0 3 0 3
28: Bolivia 1995 0 0 0 0 0 3 0 3
29: Bolivia 1996 0 0 0 0 0 3 0 3
30: Bolivia 1997 0 0 0 0 0 3 0 3
31: Bolivia 1998 0 0 0 0 0 3 0 3
32: Bolivia 1999 0 0 0 0 0 3 0 3
33: Bolivia 2000 0 1 0 1 0 3 2 3
34: Bolivia 2001 0 0 0 0 0 5 0 5
35: Bolivia 2002 0 0 0 0 0 5 0 5
36: Bolivia 2003 0 0 0 0 0 5 0 5
37: Bolivia 2004 0 0 0 0 0 5 0 5
38: Bolivia 2005 0 0 0 0 0 5 0 5
39: Bolivia 2006 0 0 0 0 0 5 0 5
40: Bolivia 2007 0 0 0 0 0 5 0 5
41: Bolivia 2008 0 0 0 0 1 5 1 5
42: Bolivia 2009 0 0 0 0 0 6 0 6
43: Bolivia 2010 0 0 0 0 1 6 1 6
44: Bolivia 2011 0 0 0 0 0 7 0 7
country year X1 X2 X3 X4 X5 running_total xt rt2
关于r - 如何计算R中前几年的运行总额?,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/50972020/