3. Delete 实现
附上实验2的第一部分🔗 https://www.cnblogs.com/JayL-zxl/p/14324297.html
3. 1 删除算法原理
如果叶子结点中没有相应的key,则删除失败。否则执行下面的步骤
图片来自于这篇博文 https://www.programiz.com/dsa/deletion-from-a-b-plus-tree
情况1 要删除的要素就只在叶子结点
删除叶子结点中对应的key。删除后若结点的key的个数大于等于\(\frac{m-1}{2}\),删除操作结束。
若兄弟结点key有多余(\(>\frac{m-1}{2}\)),向兄弟结点借一个关键字,然后用兄弟结点的median key替代父结点。
情况2 要删除的元素不仅在叶子结点而且在内部结点出现
如果结点中的元素个数\(> \frac{m-1}{2}\),只需从叶结点删除key值,同时从内部节点删除键。用key元素的后继元素补充内部节点的空余空间。
如果节点中元素个数等于\(\frac{m-1}{2}\),则删除该键并从其直接兄弟借一个键。用借来的键填充内部结点中所形成的空空间。
和情况2的第一种情况类似。只不过空洞结点是当前结点的祖父结点。
情况3 这种情况是树的高度会缩小的情况。
cmu这里给了演示网站 https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html
算法描述见下表
3.2 删除算法实现
如果当前是空树则立即返回
否则先找到要删除的key所在的page
随后调用
RemoveAndDeleteRecord
在叶page上直接删除key值同样还是经典的二分查找
INDEX_TEMPLATE_ARGUMENTS int B_PLUS_TREE_LEAF_PAGE_TYPE::RemoveAndDeleteRecord(const KeyType &key, const KeyComparator &comparator) { int l=0,r=GetSize()-1; if(l>r||comparator(key,array[l].first)<0||comparator(key,array[r].first)>0)return GetSize(); while(l<=r){ int mid=(l+r)>>1; if(comparator(key, KeyAt(mid)) < 0){ r=mid; } else if (comparator(key, KeyAt(mid)) > 0) l=mid+1; else{ memmove(array + mid, array + mid + 1,static_cast<size_t>((GetSize() - mid - 1)*sizeof(MappingType))); IncreaseSize(-1); break; } } return GetSize(); }
删除之后的叶子结点有两种情况
叶子结点内关键字个数小于最小值向下执行。否则结束
-- 调用CoalesceOrRedistribute
1.如果当前结点是根节点则调用AdjustRoot(node)
INDEX_TEMPLATE_ARGUMENTS
bool BPLUSTREE_TYPE::AdjustRoot(BPlusTreePage *old_root_node) {
//case 2
if (old_root_node->IsLeafPage()) {
if (old_root_node->GetSize() == 0) {
root_page_id_ = INVALID_PAGE_ID;
UpdateRootPageId(false);
return true;
}
return false;
}
// case 1
if (old_root_node->GetSize() == 2) {
auto root =reinterpret_cast<BPlusTreeInternalPage<KeyType, page_id_t,KeyComparator> *>(old_root_node);
root_page_id_ = root->ValueAt(1);
UpdateRootPageId(false);
auto page = buffer_pool_manager_->FetchPage(root_page_id_);
if (page == nullptr) {
throw "no page can used while AdjustRoot";
}
auto new_root =reinterpret_cast<BPlusTreeInternalPage<KeyType, page_id_t,KeyComparator> *>(page);
new_root->SetParentPageId(INVALID_PAGE_ID);
buffer_pool_manager_->UnpinPage(root_page_id_, true);
return true;
}
return false;
}
2.否则应该找它的兄弟节点
调用CoalesceOrRedistribute
a. 如果兄弟结点的size+当前结点的size大于最大值则需要重新分配
-- 调用Redistribute
函数
INDEX_TEMPLATE_ARGUMENTS
template <typename N>
bool BPLUSTREE_TYPE::CoalesceOrRedistribute(N *node, Transaction *transaction) {
if (node->IsRootPage()) {
return AdjustRoot(node);
}
if (node->IsLeafPage()) {
if (node->GetSize() >= node->GetMinSize()) {
return false;
}
} else {
if (node->GetSize() > node->GetMinSize()) {
return false;
}
}
auto page = buffer_pool_manager_->FetchPage(node->GetParentPageId());
if (page == nullptr) {
throw "no page can used while CoalesceOrRedistribute";
}
auto parent =reinterpret_cast<BPlusTreeInternalPage<KeyType, page_id_t,KeyComparator> *>(page);
int value_index = parent->ValueIndex(node->GetPageId());
//sibling page always find left page
int sibling_page_id;
if (value_index == 0) {
sibling_page_id = parent->ValueAt(value_index + 1);
} else {
sibling_page_id = parent->ValueAt(value_index - 1);
}
// fetch sibling node
auto sibling_page = buffer_pool_manager_->FetchPage(sibling_page_id);
if (sibling_page == nullptr) {
throw Exception("all page are pinned while CoalesceOrRedistribute");
}
// put sibling node to PageSet
sibling_page->WLatch();
transaction->AddIntoPageSet(sibling_page);
auto sibling = reinterpret_cast<N *>(sibling_page);
bool is_redistribute = false;
// If sibling's size + input
// page's size > page's max size, then redistribute.
if (sibling->GetSize() + node->GetSize() > node->GetMaxSize()) {
is_redistribute = true;
//TODO need to modify parent
buffer_pool_manager_->UnpinPage(parent->GetPageId(), true);
}
// exec redistribute
if (is_redistribute) {
Redistribute<N>(sibling, node, value_index);
return false;
}
//Otherwise, merge.
bool ret;
if (value_index == 0) {
Coalesce<N>(node, sibling, parent, 1, transaction);
transaction->AddIntoDeletedPageSet(sibling_page_id);
// node should not be deleted
ret = false;
} else {
Coalesce<N>(sibling, node, parent, value_index, transaction);
// node should be deleted
ret = true;
}
//TODO unpin parent
buffer_pool_manager_->UnpinPage(parent->GetPageId(), true);
return ret;
}
重新分配的时候有两种情况
(1) 移动它左边结点最大的的元素到当前结点的第一个元素---对应MoveLastToFrontOf
函数
注意这里对于internalPage
和LeafPage
并不一样
首先看对于LeafPage
的实现
整体逻辑非常简单
- 就是把元素append到末尾
- 然后就是修改父亲结点的元素。
INDEX_TEMPLATE_ARGUMENTS
void B_PLUS_TREE_LEAF_PAGE_TYPE::MoveLastToFrontOf(BPlusTreeLeafPage *recipient,int parentIndex,
BufferPoolManager *buffer_pool_manager) {
MappingType pair = GetItem(GetSize() - 1);
IncreaseSize(-1);
recipient->CopyFirstFrom(pair, parentIndex, buffer_pool_manager);
}
INDEX_TEMPLATE_ARGUMENTS
void B_PLUS_TREE_LEAF_PAGE_TYPE::CopyFirstFrom(const MappingType &item, int parentIndex,
BufferPoolManager *buffer_pool_manager) {
assert(GetSize() + 1 < GetMaxSize());
memmove(array + 1, array, GetSize()*sizeof(MappingType));
IncreaseSize(1);
array[0] = item;
auto page = buffer_pool_manager->FetchPage(GetParentPageId());
if (page == nullptr) {
throw "no page can used while CopyFirstFrom";
}
// get parent
auto parent =reinterpret_cast<BPlusTreeInternalPage<KeyType, decltype(GetPageId()),KeyComparator> *>(page->GetData());
parent->SetKeyAt(parentIndex, item.first);
buffer_pool_manager->UnpinPage(GetParentPageId(), true);
}
然后看对于InternalPage
的实现
- 这里和
leafpage
不一样的就是最后一个元素在GetSize()
处 - 这里要修改移动元素
value
值(所指向的结点)的parent
结点
INDEX_TEMPLATE_ARGUMENTS
void B_PLUS_TREE_INTERNAL_PAGE_TYPE::MoveLastToFrontOf(BPlusTreeInternalPage *recipient, int parent_index,
BufferPoolManager *buffer_pool_manager) {
assert(GetSize() > 1);
IncreaseSize(-1);
MappingType pair = array[GetSize()];
page_id_t child_page_id = pair.second;
recipient->CopyFirstFrom(pair,parent_index, buffer_pool_manager);
// update parent page id
auto page = buffer_pool_manager->FetchPage(child_page_id);
if (page == nullptr) {
throw "no page can used while MoveLastFrontOf";
}
//把要移动元素所指向的结点的parent指针修改。
auto child = reinterpret_cast<BPlusTreePage *>(page->GetData());
child->SetParentPageId(recipient->GetPageId());
assert(child->GetParentPageId() == recipient->GetPageId());
buffer_pool_manager->UnpinPage(child->GetPageId(), true);
}
/* Append an entry at the beginning.
* Since it is an internal page, the moved entry(page)'s parent needs to be updated.
* So I need to 'adopt' it by changing its parent page id, which needs to be persisted with BufferPoolManger
*/
INDEX_TEMPLATE_ARGUMENTS
void B_PLUS_TREE_INTERNAL_PAGE_TYPE::CopyFirstFrom(const MappingType &pair, int parent_index,BufferPoolManager *buffer_pool_manager) {
assert(GetSize() + 1 < GetMaxSize());
auto page = buffer_pool_manager->FetchPage(GetParentPageId());
if (page == nullptr) {
throw "no page can used while CopyFirstFrom";
}
auto parent = reinterpret_cast<BPlusTreeInternalPage *>(page->GetData());
auto key = parent->KeyAt(parent_index);
// set parent key to the last of current page
parent->SetKeyAt(parent_index, pair.first);
InsertNodeAfter(array[0].second, key, array[0].second);
array[0].second = pair.second;
buffer_pool_manager->UnpinPage(parent->GetPageId(), true);
}
(2) 移动它右边结点最小的元素到当前结点的最后一个元素---对应了MoveFirstToEndOf
函数
注意这里对于internalPage
和LeafPage
并不一样
首先看对于LeafPage
的实现
- 取右边的第一个元素,然后把其他元素都向前移动一个位置(用
memmove
实现) - 然后调用
CopyLastFrom
函数把元素拷贝过去 - 随后修改
node
对应parent的key值
INDEX_TEMPLATE_ARGUMENTS
void B_PLUS_TREE_LEAF_PAGE_TYPE::MoveFirstToEndOf(BPlusTreeLeafPage *recipient,BufferPoolManager *buffer_pool_manager) {
MappingType pair = GetItem(0);
IncreaseSize(-1);
memmove(array, array + 1, static_cast<size_t>(GetSize()*sizeof(MappingType)));
recipient->CopyLastFrom(pair);
auto page = buffer_pool_manager->FetchPage(GetParentPageId());
if (page == nullptr) {
throw "no page can used while MoveFirstToEndOf";
}
auto parent =reinterpret_cast<BPlusTreeInternalPage<KeyType, decltype(GetPageId()),KeyComparator> *>(page->GetData());
parent->SetKeyAt(parent->ValueIndex(GetPageId()), pair.first);
buffer_pool_manager->UnpinPage(GetParentPageId(), true);
}
/*
* Copy the item into the end of my item list. (Append item to my array)
*/
INDEX_TEMPLATE_ARGUMENTS
void B_PLUS_TREE_LEAF_PAGE_TYPE::CopyLastFrom(const MappingType &item) {
assert(GetSize() + 1 <= GetMaxSize());
array[GetSize()] = item;
IncreaseSize(1);
}
然后看对于InternalPage
的实现
- 这里需要注意的是
internalPage
的一个key是在index=1的位置(因为第一个位置就是一个没有key值的指针位置) - 因为是内部页,所以要修改它的孩子结点的指向。
- 还要修改内部结点父结点对应的key
INDEX_TEMPLATE_ARGUMENTS
void B_PLUS_TREE_INTERNAL_PAGE_TYPE::MoveFirstToEndOf(BPlusTreeInternalPage *recipient,BufferPoolManager *buffer_pool_manager) {
assert(GetSize() > 1);
MappingType pair{KeyAt(1), ValueAt(0)};
page_id_t child_page_id = ValueAt(0);
SetValueAt(0, ValueAt(1));
Remove(1);
recipient->CopyLastFrom(pair, buffer_pool_manager);
// update child parent page id
auto page = buffer_pool_manager->FetchPage(child_page_id);
if (page == nullptr) {
throw "no page can used while MoveFirstToEndOf";
}
auto child = reinterpret_cast<BPlusTreePage *>(page);
child->SetParentPageId(recipient->GetPageId());
assert(child->GetParentPageId() == recipient->GetPageId());
buffer_pool_manager->UnpinPage(child->GetPageId(), true);
}
/* Append an entry at the end.
* Since it is an internal page, the moved entry(page)'s parent needs to be updated.
* So I need to 'adopt' it by changing its parent page id, which needs to be persisted with BufferPoolManger
*/
INDEX_TEMPLATE_ARGUMENTS
void B_PLUS_TREE_INTERNAL_PAGE_TYPE::CopyLastFrom(const MappingType &pair, BufferPoolManager *buffer_pool_manager) {
assert(GetSize() + 1 <= GetMaxSize());
auto page = buffer_pool_manager->FetchPage(GetParentPageId());
if (page == nullptr) {
throw Exception("all page are pinned while CopyLastFrom");
}
auto parent = reinterpret_cast<BPlusTreeInternalPage *>(page);
auto index = parent->ValueIndex(GetPageId());
auto key = parent->KeyAt(index + 1);
array[GetSize()] = {key, pair.second};
IncreaseSize(1);
parent->SetKeyAt(index + 1, pair.first);
buffer_pool_manager->UnpinPage(parent->GetPageId(), true);
}
b.否则需要进行merge操作
-- 调用Coalesce
函数
- Coalesce函数比较简单
- 首先把
node
结点的所有元素都移动到它的兄弟节点上 - 调整父结点。也就是把array向前移动
- 递归调用
CoalesceOrRedistribute
函数
INDEX_TEMPLATE_ARGUMENTS
template <typename N>
void BPLUSTREE_TYPE::Coalesce(N *neighbor_node, N *node,BPlusTreeInternalPage<KeyType, page_id_t, KeyComparator> *parent,int index, Transaction *transaction) {
// assumption: neighbor_node is predecessor of node
//LOG_DEBUG("index %d",index);
node->MoveAllTo(neighbor_node,index,buffer_pool_manager_);
LOG_DEBUG("size %d",node->GetSize());
// adjust parent
parent->Remove(index);
//recursive
if (CoalesceOrRedistribute(parent, transaction)) {
transaction->AddIntoDeletedPageSet(parent->GetPageId());
}
}
Internal内的 Remove
函数
INDEX_TEMPLATE_ARGUMENTS
void B_PLUS_TREE_INTERNAL_PAGE_TYPE::Remove(int index) {
assert(0 <= index && index < GetSize());
memmove(array+index,array+index+1,(GetSize()-index-1)*sizeof(MappingType));
IncreaseSize(-1);
}
好了删除算法已经实现了。首先我们可以通过test函数
cd build
make b_plus_tree_delete_test
./test/b_plus_tree_delete_test --gtest_also_run_disabled_tests
然后我们自己做一些test。这里我就拿一个例子来看
插入10、5、7、4、9得到下图是正确的🌟
然后删除元素7
可以发现是完全正确的好了。第二部分就完成了。下面就是最后一部分对于🔒的实现和迭代器的实现