pixijs shader 贴图溶解效果教程
我直接贴代码了 没什么好讲解了 稍微有点基础的人应该能看懂
const app = new PIXI.Application({ transparent: true }); document.body.appendChild(app.view); // Create background image const background = PIXI.Sprite.from('/moban/bg_grass.jpg'); background.width = app.screen.width; background.height = app.screen.height; app.stage.addChild(background); // Stop application wait for load to finish app.stop(); app.loader.add('shader', '/moban/shader.frag') .load(onLoaded); let filter; // Handle the load completed function onLoaded(loader, res) { // Create the new filter, arguments: (vertexShader, framentSource) filter = new PIXI.Filter(null, res.shader.data, { customUniform: 0.0, }); // === WARNING === // specify uniforms in filter constructor // or set them BEFORE first use // filter.uniforms.customUniform = 0.0 // Add the filter background.filters = [filter]; // Resume application update app.start(); } var i=-1.0; // Animate the filter app.ticker.add((delta) => { i+=0.03; if(i>=1){ i=1; } filter.uniforms.customUniform = i; });
/moban/shader.frag代码如下
precision mediump float; varying vec2 vTextureCoord; varying vec4 vColor; uniform sampler2D uSampler; uniform float customUniform; // // Description : Array and textureless GLSL 2D simplex noise function. // Author : Ian McEwan, Ashima Arts. // Maintainer : stegu // Lastmod : 20110822 (ijm) // License : Copyright (C) 2011 Ashima Arts. All rights reserved. // Distributed under the MIT License. See LICENSE file. // https://github.com/ashima/webgl-noise // https://github.com/stegu/webgl-noise // vec3 mod289(vec3 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec2 mod289(vec2 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec3 permute(vec3 x) { return mod289(((x*34.0)+1.0)*x); } float snoise(vec2 v) { const vec4 C = vec4(0.211324865405187, // (3.0-sqrt(3.0))/6.0 0.366025403784439, // 0.5*(sqrt(3.0)-1.0) -0.577350269189626, // -1.0 + 2.0 * C.x 0.024390243902439); // 1.0 / 41.0 // First corner vec2 i = floor(v + dot(v, C.yy) ); vec2 x0 = v - i + dot(i, C.xx); // Other corners vec2 i1; //i1.x = step( x0.y, x0.x ); // x0.x > x0.y ? 1.0 : 0.0 //i1.y = 1.0 - i1.x; i1 = (x0.x > x0.y) ? vec2(1.0, 0.0) : vec2(0.0, 1.0); // x0 = x0 - 0.0 + 0.0 * C.xx ; // x1 = x0 - i1 + 1.0 * C.xx ; // x2 = x0 - 1.0 + 2.0 * C.xx ; vec4 x12 = x0.xyxy + C.xxzz; x12.xy -= i1; // Permutations i = mod289(i); // Avoid truncation effects in permutation vec3 p = permute( permute( i.y + vec3(0.0, i1.y, 1.0 )) + i.x + vec3(0.0, i1.x, 1.0 )); vec3 m = max(0.5 - vec3(dot(x0,x0), dot(x12.xy,x12.xy), dot(x12.zw,x12.zw)), 0.0); m = m*m ; m = m*m ; // Gradients: 41 points uniformly over a line, mapped onto a diamond. // The ring size 17*17 = 289 is close to a multiple of 41 (41*7 = 287) vec3 x = 2.0 * fract(p * C.www) - 1.0; vec3 h = abs(x) - 0.5; vec3 ox = floor(x + 0.5); vec3 a0 = x - ox; // Normalise gradients implicitly by scaling m // Approximation of: m *= inversesqrt( a0*a0 + h*h ); m *= 1.79284291400159 - 0.85373472095314 * ( a0*a0 + h*h ); // Compute final noise value at P vec3 g; g.x = a0.x * x0.x + h.x * x0.y; g.yz = a0.yz * x12.xz + h.yz * x12.yw; return 130.0 * dot(m, g); } void main(void) { vec2 uv = vTextureCoord; vec2 pos = uv; pos.x = snoise(vec2(pos.x * 2.0)); float noise = snoise(pos); vec4 texture2 = texture2D(uSampler,uv); float step = customUniform; gl_FragColor = texture2 * (1.0 - smoothstep(step, step, noise)); }