我正在尝试完成以下任务:
有一个computeTspTour(size, start, distance)函数,它使我可以从size开始,通过start遍历许多顶点,这是最短的近似过程。在这里,distance是一个函数对象,它接受两个索引并返回它们之间的距离。
我想利用boost::graphmetric_tsp_approx。为此,我需要一个完整的基数size图,因此我想为此使用一个隐式定义的图,以避免创建无用的琐碎巨大图结构。
看起来一切正常,但是我的问题是metric_tsp_approx在某些时候使用了dijkstra_shortest_paths,它定义了ColorMap。这导致以下两个问题:

但是,我看不到如何从自己的位置修复ColorMap的特征,仅靠自己创建颜色属性图没有任何好处。
下面是我用来创建隐式图并在其上运行tsp_metric_approx的代码。很抱歉,我希望它简单明了。它的作用是设置一个CompleteGraph类,该类具有一个模板参数F,该参数指定distance函数的返回类型。此类具有必要的迭代器,分别是VertexListGraphIncidenceGraph,以便tsp_metric_approx可以在其上运行。

#include <algorithm>
#include <functional>
#include <iostream>
#include <iterator>
#include <vector>

#include <boost/iterator/iterator_facade.hpp>
#include <boost/graph/metric_tsp_approx.hpp>

using namespace boost;

typedef std::size_t VertexDescriptor;
typedef std::pair<VertexDescriptor, VertexDescriptor> EdgeDescriptor;

class VertexIterator : public boost::iterator_facade<VertexIterator, VertexDescriptor const, boost::bidirectional_traversal_tag>
{
    public:
        //! Default constructor
        VertexIterator() : pos_(0) {}

        //! Constructor setting the position
        explicit VertexIterator(VertexDescriptor pos) : pos_(pos) {}

        //! Dereference the iterator
        VertexDescriptor const& dereference() const { return pos_; }

        //! Check for equality
        bool equal(VertexIterator const& other) const { return pos_ == other.pos_; }

        //! Increment
        void increment() { ++pos_; }

        //! Decrement
        void decrement() { --pos_; }

    private:
        //! Grant access to boost::iterator_facade
        friend class boost::iterator_core_access;

        //! The current position
        VertexDescriptor pos_ = 0;
};

class OutEdgeIterator : public boost::iterator_facade<OutEdgeIterator, EdgeDescriptor const, boost::bidirectional_traversal_tag>
{
    public:
        //! Constructor setting the source vertex
        explicit OutEdgeIterator(VertexDescriptor source) { const std::size_t target = source == 0 ? 1 : 0; pos_ = EdgeDescriptor(source, target); }

        //! Constructor setting the source vertex and the target
        explicit OutEdgeIterator(VertexDescriptor source, VertexDescriptor target) : pos_(source, target) {}

        //! Dereference the iterator
        EdgeDescriptor const& dereference() const { return pos_; }

        //! Check for equality
        bool equal(OutEdgeIterator const& other) const { return pos_ == other.pos_; }

        //! Increment
        void increment() { ++pos_.second; if(pos_.first == pos_.second) { ++pos_.second; } }

        //! Decrement
        void decrement() { --pos_.second; if(pos_.first == pos_.second) { --pos_.second; } }

    private:
        //! Grant access to boost::iterator_facade
        friend class boost::iterator_core_access;

        //! The current edge
        EdgeDescriptor pos_ = EdgeDescriptor(0, 1);
};

//! Class representing a complete graph
/*!
 * This class works as a complete graph.
 * It defines a distance property map between any two points by calling the passed distance function.
 * \tparam F The return type of the distance function
 */
template<typename F>
class CompleteGraph
{
    public:
        typedef VertexDescriptor vertex_descriptor;
        typedef EdgeDescriptor edge_descriptor;
        typedef void adjacency_iterator;
        typedef OutEdgeIterator out_edge_iterator;
        typedef void in_edge_iterator;
        typedef void edge_iterator;
        typedef VertexIterator vertex_iterator;
        typedef std::size_t degree_size_type;
        typedef std::size_t vertices_size_type;
        typedef std::size_t edges_size_type;
        typedef undirected_tag directed_category;
        typedef disallow_parallel_edge_tag edge_parallel_category;
        typedef vertex_list_graph_tag traversal_category;

        //! Delete default constructor
        CompleteGraph() = delete;

        //! Constructor from a given size
        /*!
         * If no distance is specified, we default to a constant function returning F(1)
         */
        explicit CompleteGraph(std::size_t size) : size_(size), distance_(returnOne) {}

        //! Constructor from a given size and a distance function of type F
        /*!
         * The constructed graph will have size many vertices.
         * Its distance map will be of the following form: The distance between points i and j is distance(i, j).
         * \param[in] size The size the graph should have
         * \param[in] distance Binary function taking std::size_t arguments and returning the distance between two points
         */
        explicit CompleteGraph(std::size_t size, std::function<F(std::size_t, std::size_t)> const& distance) : size_(size), distance_(distance) {}

        //! Access to size_
        std::size_t size() const { return size_; }

        //! Access to distance_
        std::function<F(std::size_t, std::size_t)> const& distance() const { return distance_; }

    private:
        //! The size of the graph
        std::size_t size_;

        //! The distance function used to find the distance between point i and point j
        std::function<F(std::size_t, std::size_t)> const& distance_;

        //! Distance function that just returns F(1)
        std::function<F(std::size_t, std::size_t)> returnOne = [] (std::size_t, std::size_t) { return F(1); };
};

//! Weigth map for all edges
template<typename F>
class EdgeWeightMap
{
    public:
        typedef F value_type;
        typedef F reference_type;
        typedef reference_type reference;
        typedef EdgeDescriptor key_type;
        typedef readable_property_map_tag category;

        //! Constructor from a distance function
        explicit EdgeWeightMap(std::function<F(std::size_t, std::size_t)> const& distance) : distance_(distance) {}

        //! Operator to dereference the property map
        value_type operator[](key_type key) const { return distance_(key.first, key.second); }

        //! Get function
        friend inline value_type get(EdgeWeightMap<F> const& edgeWeightMap, EdgeWeightMap<F>::key_type const& key) { return edgeWeightMap[key]; }

    private:
        //! The distance function
        std::function<F(std::size_t, std::size_t)> const& distance_;
};

//! Return the number of vertices of a CompleteGraph
template<typename F>
std::size_t num_vertices(CompleteGraph<F> const& g) { return g.size(); }

//! Return a pair allowing iteration over all vertices
template<typename F>
std::pair<VertexIterator, VertexIterator> vertices(CompleteGraph<F> const& g) { return std::make_pair(VertexIterator(0), VertexIterator(g.size())); }

//! Return a pair allowing iteration over all outgoing edges of a vertex
template<typename F>
std::pair<OutEdgeIterator, OutEdgeIterator> out_edges(VertexDescriptor s, CompleteGraph<F> const& g) { return std::make_pair(OutEdgeIterator(s), OutEdgeIterator(s, g.size())); }

//! Return the out-degree which is constant size - 1 for all vertices
template<typename F>
std::size_t out_degree(VertexDescriptor, CompleteGraph<F> const& g) { return g.size() - 1; }

//! Return the source of an edge
template<typename F>
VertexDescriptor source(EdgeDescriptor e, CompleteGraph<F> const&) { return e.first; }

//! Return the target of an edge
template<typename F>
VertexDescriptor target(EdgeDescriptor e, CompleteGraph<F> const&) { return e.second; }

//! Return the index map
template<typename F>
identity_property_map get(vertex_index_t, CompleteGraph<F> const&) { return identity_property_map(); }

//! Return the distance map
template<typename F>
EdgeWeightMap<F> get(edge_weight_t, CompleteGraph<F> const& g) { return EdgeWeightMap<F>(g.distance()); }

//! Wrapper function for automatic template parameter
template<typename F>
CompleteGraph<F> makeCompleteGraph(std::size_t size, std::function<F(std::size_t, std::size_t)> const& distance) { return CompleteGraph<F>(size, distance); }

//! Compute a metric TSP solution through the points supplied
/*!
 * This function finds a solution through n many points whose pairwise distance is given by a function argument.
 * The supplied distance function needs to satisfy the triangle inequality and must be symmetric.
 * \tparam F The type of the return value of distance
 * \param[in] size The number of points through which the TSP tour should be found
 * \param[in] start The index of the point at which to start
 * \param[in] distance A function taking two std::size_t's and returning the distance between point i and point j
 * \return A vector representing the TSP tour
 */
template<typename F>
std::vector<std::size_t> computeTspTour(std::size_t size, std::size_t start, std::function<F(std::size_t, std::size_t)> const& distance)
{
    std::vector<std::size_t> tour;
    const auto completeGraph = makeCompleteGraph(size, distance);
    metric_tsp_approx_tour_from_vertex(completeGraph, start, std::back_inserter(tour));
    return tour;
}

int main()
{
    typedef std::complex<double> Point;

    const std::vector<Point> points{{.0, .0}, {1.0, 2.0}, {1.0, 5.0}, {2.5, 9.2}, {-100.2, 24.1}, {.1, 10.0}};
    const std::function<double(std::size_t, std::size_t)> distance = [&points] (std::size_t i, std::size_t j) { return std::abs(points[i] - points[j]); };

    const auto tour = computeTspTour(points.size(), 0, distance);

    std::cout << "Found TSP tour:\n";
    std::copy(tour.cbegin(), tour.cend(), std::ostream_iterator<char>(std::cout, " "));

    return EXIT_SUCCESS;
}
如果有人提出的替代建议更短,或者根本不创建任何图形,我也很高兴,完整的图形除了其顶点数量之外,实际上不包含任何信息。

最佳答案

DFS和TSP算法要求图既是“顶点列表”又是“事件图”(即可以访问顶点邻居的图)。

您的图表必须具有类似

 struct traversal_category
        : public virtual boost::vertex_list_graph_tag
        , public virtual boost::adjacency_graph_tag
        , public virtual boost::incidence_graph_tag
    {
    };

     typedef typename boost::adjacency_iterator_generator<CompleteGraph<F>, vertex_descriptor, out_edge_iterator>::type adjacency_iterator;

代替
 typedef vertex_list_graph_tag traversal_category;
 typedef void adjacency_iterator;

通过这些更改以及一些修饰性的更改,您的代码即可通过编译。

顶点索引图是可选的,Boost将使用VertexMap和ColorMap包装您的代码,可能基于unordered_map。它的效率不如“身份”或类似的自定义 map ,但可以使用。

祝好运!

10-07 19:07