请帮助我绘制以下数据的正态分布:
数据:
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
h = [186, 176, 158, 180, 186, 168, 168, 164, 178, 170, 189, 195, 172,
187, 180, 186, 185, 168, 179, 178, 183, 179, 170, 175, 186, 159,
161, 178, 175, 185, 175, 162, 173, 172, 177, 175, 172, 177, 180]
std = np.std(h)
mean = np.mean(h)
plt.plot(norm.pdf(h,mean,std))
输出:Standard Deriviation = 8.54065575872
mean = 176.076923077
情节不正确,我的代码有什么问题? 最佳答案
注意:此解决方案使用的是pylab
,而不是matplotlib.pyplot
您可以尝试使用hist
将数据信息与拟合曲线一起放置,如下所示:
import numpy as np
import scipy.stats as stats
import pylab as pl
h = sorted([186, 176, 158, 180, 186, 168, 168, 164, 178, 170, 189, 195, 172,
187, 180, 186, 185, 168, 179, 178, 183, 179, 170, 175, 186, 159,
161, 178, 175, 185, 175, 162, 173, 172, 177, 175, 172, 177, 180]) #sorted
fit = stats.norm.pdf(h, np.mean(h), np.std(h)) #this is a fitting indeed
pl.plot(h,fit,'-o')
pl.hist(h,normed=True) #use this to draw histogram of your data
pl.show() #use may also need add this
关于python - 用Matplotlib绘制正态分布,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/20011494/