我在这里阅读了所有相关问题,但找不到可行的解决方案:
我的分类器创建:
class StemmedTfidfVectorizer(TfidfVectorizer):
def build_analyzer(self):
analyzer = super(TfidfVectorizer, self).build_analyzer()
return lambda doc: english_stemmer.stemWords(analyzer(doc))
tf = StemmedTfidfVectorizer(analyzer='word', ngram_range=(1,2), min_df = 0, max_features=200000, stop_words = 'english')
def create_tfidf(f):
docs = []
targets = []
with open(f, "r") as sentences_file:
reader = csv.reader(sentences_file, delimiter=';')
reader.next()
for row in reader:
docs.append(row[1])
targets.append(row[0])
tfidf_matrix = tf.fit_transform(docs)
print tfidf_matrix.shape
# print tf.get_feature_names()
return tfidf_matrix, targets
X,y = create_tfidf("l0.csv")
clf = LinearSVC().fit(X,y)
_ = joblib.dump(clf, 'linearL0_3gram_100K.pkl', compress=9)
该位有效,并生成.pkl,然后我尝试在其他脚本中使用它:
class StemmedTfidfVectorizer(TfidfVectorizer):
def build_analyzer(self):
analyzer = super(TfidfVectorizer, self).build_analyzer()
return lambda doc: english_stemmer.stemWords(analyzer(doc))
tf = StemmedTfidfVectorizer(analyzer='word', ngram_range=(1,2), min_df = 0, max_features=200000, stop_words = 'english')
clf = joblib.load('linearL0_3gram_100K.pkl')
print clf
test = "My super elaborate test string to test predictions"
print test + clf.predict(tf.transform([test]))[0]
我得到ValueError:
Vocabulary wasn't fitted or is empty!
编辑:根据请求的错误回溯
File "classifier.py", line 27, in <module>
print test + clf.predict(tf.transform([test]))[0]
File "/home/ec2-user/.local/lib/python2.7/site-packages/sklearn/feature_extraction/text.py", line 1313, in transform
X = super(TfidfVectorizer, self).transform(raw_documents)
File "/home/ec2-user/.local/lib/python2.7/site-packages/sklearn/feature_extraction/text.py", line 850, in transform
self._check_vocabulary()
File "/home/ec2-user/.local/lib/python2.7/site-packages/sklearn/feature_extraction/text.py", line 271, in _check_vocabulary
check_is_fitted(self, 'vocabulary_', msg=msg),
File "/home/ec2-user/.local/lib/python2.7/site-packages/sklearn/utils/validation.py", line 627, in check_is_fitted
raise NotFittedError(msg % {'name': type(estimator).__name__})
sklearn.utils.validation.NotFittedError: StemmedTfidfVectorizer - Vocabulary wasn't fitted.
最佳答案
好的,我通过使用管道将矢量化程序保存在.plk中来解决了该问题
这是它的外观(也更简单):
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.externals import joblib
from sklearn.pipeline import Pipeline
import Stemmer
import pickle
english_stemmer = Stemmer.Stemmer('en')
class StemmedTfidfVectorizer(TfidfVectorizer):
def build_analyzer(self):
analyzer = super(TfidfVectorizer, self).build_analyzer()
return lambda doc: english_stemmer.stemWords(analyzer(doc))
def create_tfidf(f):
docs = []
targets = []
with open(f, "r") as sentences_file:
reader = csv.reader(sentences_file, delimiter=';')
reader.next()
for row in reader:
docs.append(row[1])
targets.append(row[0])
return docs, targets
docs,y = create_tfidf("l1.csv")
tf = StemmedTfidfVectorizer(analyzer='word', ngram_range=(1,2), min_df = 0, max_features=200000, stop_words = 'english')
clf = LinearSVC()
vec_clf = Pipeline([('tfvec', tf), ('svm', clf)])
vec_clf.fit(docs,y)
_ = joblib.dump(vec_clf, 'linearL0_3gram_100K.pkl', compress=9)
在另一边:
from sklearn.svm import LinearSVC
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.externals import joblib
import Stemmer
import pickle
english_stemmer = Stemmer.Stemmer('en')
class StemmedTfidfVectorizer(TfidfVectorizer):
def build_analyzer(self):
analyzer = super(TfidfVectorizer, self).build_analyzer()
return lambda doc: english_stemmer.stemWords(analyzer(doc))
clf = joblib.load('linearL0_3gram_100K.pkl')
test = ["My super elaborate test string to test predictions"]
print test + clf.predict(test)[0]
重要事项:
转换器是tf的一部分,因此是管道的一部分,因此无需重新声明新的矢量化程序(这是较早的失败点,因为它需要训练后的数据中的词汇表),也无需对测试字符串进行.transform()。
关于python - 加载腌制的分类器数据: Vocabulary not fitted Error,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/31744519/