说明:
这个问题是关于QuickDraw RNN Drawing classification tensorflow tutorial的,而不是text RNN tensorflow tutorial
延伸来说,它是Farooq Khan's question的重复,但是我可以使用一些更具体的细节(否则很容易成为麻烦的注释),并借此机会奖励Farooq花时间提供更多细节。
我正在使用NVIDIA GeForce GT 750M 2048 MB GPU的Macbook上运行从GPU支持的源代码编译的tensorflow 1.6.0-rc0。
我试图像这样训练:
python train_model.py --model_dir=./model_gpu --training_data=./rnn_tutorial_data/training.tfrecord-00000-of-00010 --eval_data=./rnn_tutorial_data/eval.tfrecord-00000-of-00010 --classes_file=./rnn_tutorial_data/training.tfrecord.classes --cell_type=cudnn_lstm
我正在寻找的初步澄清是:
我应该使用上面的命令,然后完成以下操作:
python train_model.py --model_dir=./model_gpu --training_data=./rnn_tutorial_data/training.tfrecord-00001-of-00010 --eval_data=./rnn_tutorial_data/eval.tfrecord-00001-of-00010 --classes_file=./rnn_tutorial_data/training.tfrecord.classes --cell_type=cudnn_lstm
到python train_model.py --model_dir=./model_gpu --training_data=./rnn_tutorial_data/training.tfrecord-00009-of-00010 --eval_data=./rnn_tutorial_data/eval.tfrecord-00009-of-00010 --classes_file=./rnn_tutorial_data/training.tfrecord.classes --cell_type=cudnn_lstm
,还是应该按原样运行教程中提到的命令:python train_model.py \--training_data=rnn_tutorial_data/training.tfrecord-?????-of-????? \--eval_data=rnn_tutorial_data/eval.tfrecord-?????-of-????? \--classes_file=rnn_tutorial_data/training.tfrecord.classes
我怎么知道培训何时完成? (这些是上次培训课程中的最后一条消息:
2018-04-11 01:43:27.180805: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1410] Adding visible gpu devices: 02018-04-11 01:43:27.180860: I tensorflow/core/common_runtime/gpu/gpu_device.cc:911] Device interconnect StreamExecutor with strength 1 edge matrix:2018-04-11 01:43:27.180866: I tensorflow/core/common_runtime/gpu/gpu_device.cc:917] 02018-04-11 01:43:27.180869: I tensorflow/core/common_runtime/gpu/gpu_device.cc:930] 0: N2018-04-11 01:43:27.180950: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1021] Creating TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 100 MB memory) -> physical GPU (device: 0, name: GeForce GT 750M, pci bus id: 0000:01:00.0, compute capability: 3.0)
之后没有错误或其他任何输出:很难将这些消息与其他先前的检查点区分开)如何通过自定义涂鸦进行分类?这是我的问题的核心。 Farooq在他的答案中的
create_tfrecord_for_prediction
很棒:可以运行/测试的完整脚本会很棒更新2
感谢Farooq的帮助说明,这是代码的经过调整的版本,可将预测打印到控制台:
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Binary for trianing a RNN-based classifier for the Quick, Draw! data.
python train_model.py \
--training_data train_data \
--eval_data eval_data \
--model_dir /tmp/quickdraw_model/ \
--cell_type cudnn_lstm
When running on GPUs using --cell_type cudnn_lstm is much faster.
The expected performance is ~75% in 1.5M steps with the default configuration.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import ast
import functools
import sys
from datetime import datetime
import json
import numpy as np
import tensorflow as tf
def get_num_classes():
classes = []
with tf.gfile.GFile(FLAGS.classes_file, "r") as f:
classes = [x for x in f]
num_classes = len(classes)
return num_classes
def get_input_fn(mode, tfrecord_pattern, batch_size):
"""Creates an input_fn that stores all the data in memory.
Args:
mode: one of tf.contrib.learn.ModeKeys.{TRAIN, INFER, EVAL}
tfrecord_pattern: path to a TF record file created using create_dataset.py.
batch_size: the batch size to output.
Returns:
A valid input_fn for the model estimator.
"""
def _parse_tfexample_fn(example_proto, mode):
"""Parse a single record which is expected to be a tensorflow.Example."""
feature_to_type = {
"ink": tf.VarLenFeature(dtype=tf.float32),
"shape": tf.FixedLenFeature([2], dtype=tf.int64)
}
if mode != tf.estimator.ModeKeys.PREDICT:
# The labels won't be available at inference time, so don't add them
# to the list of feature_columns to be read.
feature_to_type["class_index"] = tf.FixedLenFeature([1], dtype=tf.int64)
parsed_features = tf.parse_single_example(example_proto, feature_to_type)
parsed_features["ink"] = tf.sparse_tensor_to_dense(parsed_features["ink"])
if mode != tf.estimator.ModeKeys.PREDICT:
labels = parsed_features["class_index"]
return parsed_features, labels
else:
return parsed_features # In prediction, we have no labels
def _input_fn():
"""Estimator `input_fn`.
Returns:
A tuple of:
- Dictionary of string feature name to `Tensor`.
- `Tensor` of target labels.
"""
dataset = tf.data.TFRecordDataset.list_files(tfrecord_pattern)
if mode == tf.estimator.ModeKeys.TRAIN:
dataset = dataset.shuffle(buffer_size=10)
dataset = dataset.repeat()
# Preprocesses 10 files concurrently and interleaves records from each file.
dataset = dataset.interleave(
tf.data.TFRecordDataset,
cycle_length=10,
block_length=1)
dataset = dataset.map(
functools.partial(_parse_tfexample_fn, mode=mode),
num_parallel_calls=10)
dataset = dataset.prefetch(10000)
if mode == tf.estimator.ModeKeys.TRAIN:
dataset = dataset.shuffle(buffer_size=1000000)
# Our inputs are variable length, so pad them.
dataset = dataset.padded_batch(
batch_size, padded_shapes=dataset.output_shapes)
iter = dataset.make_one_shot_iterator()
if mode != tf.estimator.ModeKeys.PREDICT:
features, labels = iter.get_next()
return features, labels
else:
features = iter.get_next()
return features, None # In prediction, we have no labels
return _input_fn
def model_fn(features, labels, mode, params):
"""Model function for RNN classifier.
This function sets up a neural network which applies convolutional layers (as
configured with params.num_conv and params.conv_len) to the input.
The output of the convolutional layers is given to LSTM layers (as configured
with params.num_layers and params.num_nodes).
The final state of the all LSTM layers are concatenated and fed to a fully
connected layer to obtain the final classification scores.
Args:
features: dictionary with keys: inks, lengths.
labels: one hot encoded classes
mode: one of tf.estimator.ModeKeys.{TRAIN, INFER, EVAL}
params: a parameter dictionary with the following keys: num_layers,
num_nodes, batch_size, num_conv, conv_len, num_classes, learning_rate.
Returns:
ModelFnOps for Estimator API.
"""
def _get_input_tensors(features, labels):
"""Converts the input dict into inks, lengths, and labels tensors."""
# features[ink] is a sparse tensor that is [8, batch_maxlen, 3]
# inks will be a dense tensor of [8, maxlen, 3]
# shapes is [batchsize, 2]
shapes = features["shape"]
# lengths will be [batch_size]
lengths = tf.squeeze(
tf.slice(shapes, begin=[0, 0], size=[params.batch_size, 1]))
inks = tf.reshape(features["ink"], [params.batch_size, -1, 3])
if labels is not None:
labels = tf.squeeze(labels)
return inks, lengths, labels
def _add_conv_layers(inks, lengths):
"""Adds convolution layers."""
convolved = inks
for i in range(len(params.num_conv)):
convolved_input = convolved
if params.batch_norm:
convolved_input = tf.layers.batch_normalization(
convolved_input,
training=(mode == tf.estimator.ModeKeys.TRAIN))
# Add dropout layer if enabled and not first convolution layer.
if i > 0 and params.dropout:
convolved_input = tf.layers.dropout(
convolved_input,
rate=params.dropout,
training=(mode == tf.estimator.ModeKeys.TRAIN))
convolved = tf.layers.conv1d(
convolved_input,
filters=params.num_conv[i],
kernel_size=params.conv_len[i],
activation=None,
strides=1,
padding="same",
name="conv1d_%d" % i)
return convolved, lengths
def _add_regular_rnn_layers(convolved, lengths):
"""Adds RNN layers."""
if params.cell_type == "lstm":
cell = tf.nn.rnn_cell.BasicLSTMCell
elif params.cell_type == "block_lstm":
cell = tf.contrib.rnn.LSTMBlockCell
cells_fw = [cell(params.num_nodes) for _ in range(params.num_layers)]
cells_bw = [cell(params.num_nodes) for _ in range(params.num_layers)]
if params.dropout > 0.0:
cells_fw = [tf.contrib.rnn.DropoutWrapper(cell) for cell in cells_fw]
cells_bw = [tf.contrib.rnn.DropoutWrapper(cell) for cell in cells_bw]
outputs, _, _ = tf.contrib.rnn.stack_bidirectional_dynamic_rnn(
cells_fw=cells_fw,
cells_bw=cells_bw,
inputs=convolved,
sequence_length=lengths,
dtype=tf.float32,
scope="rnn_classification")
return outputs
def _add_cudnn_rnn_layers(convolved):
"""Adds CUDNN LSTM layers."""
# Convolutions output [B, L, Ch], while CudnnLSTM is time-major.
convolved = tf.transpose(convolved, [1, 0, 2])
lstm = tf.contrib.cudnn_rnn.CudnnLSTM(
num_layers=params.num_layers,
num_units=params.num_nodes,
dropout=params.dropout if mode == tf.estimator.ModeKeys.TRAIN else 0.0,
direction="bidirectional")
outputs, _ = lstm(convolved)
# Convert back from time-major outputs to batch-major outputs.
outputs = tf.transpose(outputs, [1, 0, 2])
return outputs
def _add_rnn_layers(convolved, lengths):
"""Adds recurrent neural network layers depending on the cell type."""
if params.cell_type != "cudnn_lstm":
outputs = _add_regular_rnn_layers(convolved, lengths)
else:
outputs = _add_cudnn_rnn_layers(convolved)
# outputs is [batch_size, L, N] where L is the maximal sequence length and N
# the number of nodes in the last layer.
mask = tf.tile(
tf.expand_dims(tf.sequence_mask(lengths, tf.shape(outputs)[1]), 2),
[1, 1, tf.shape(outputs)[2]])
zero_outside = tf.where(mask, outputs, tf.zeros_like(outputs))
outputs = tf.reduce_sum(zero_outside, axis=1)
return outputs
def _add_fc_layers(final_state):
"""Adds a fully connected layer."""
return tf.layers.dense(final_state, params.num_classes)
# Build the model.
inks, lengths, labels = _get_input_tensors(features, labels)
convolved, lengths = _add_conv_layers(inks, lengths)
final_state = _add_rnn_layers(convolved, lengths)
logits = _add_fc_layers(final_state)
# Compute current predictions.
predictions = tf.argmax(logits, axis=1)
if mode == tf.estimator.ModeKeys.PREDICT:
preds = {
"class_index": predictions,
#"class_index": predictions[:, tf.newaxis],
"probabilities": tf.nn.softmax(logits),
"logits": logits
}
#preds = {"logits": logits, "predictions": predictions}
return tf.estimator.EstimatorSpec(mode, predictions=preds)
# Add the loss.
cross_entropy = tf.reduce_mean(
tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels, logits=logits))
# Add the optimizer.
train_op = tf.contrib.layers.optimize_loss(
loss=cross_entropy,
global_step=tf.train.get_global_step(),
learning_rate=params.learning_rate,
optimizer="Adam",
# some gradient clipping stabilizes training in the beginning.
clip_gradients=params.gradient_clipping_norm,
summaries=["learning_rate", "loss", "gradients", "gradient_norm"])
return tf.estimator.EstimatorSpec(
mode=mode,
predictions={"logits": logits, "predictions": predictions},
loss=cross_entropy,
train_op=train_op,
eval_metric_ops={"accuracy": tf.metrics.accuracy(labels, predictions)})
def create_estimator_and_specs(run_config):
"""Creates an Experiment configuration based on the estimator and input fn."""
model_params = tf.contrib.training.HParams(
num_layers=FLAGS.num_layers,
num_nodes=FLAGS.num_nodes,
batch_size=FLAGS.batch_size,
num_conv=ast.literal_eval(FLAGS.num_conv),
conv_len=ast.literal_eval(FLAGS.conv_len),
num_classes=get_num_classes(),
learning_rate=FLAGS.learning_rate,
gradient_clipping_norm=FLAGS.gradient_clipping_norm,
cell_type=FLAGS.cell_type,
batch_norm=FLAGS.batch_norm,
dropout=FLAGS.dropout)
estimator = tf.estimator.Estimator(
model_fn=model_fn,
config=run_config,
params=model_params)
train_spec = tf.estimator.TrainSpec(input_fn=get_input_fn(
mode=tf.estimator.ModeKeys.TRAIN,
tfrecord_pattern=FLAGS.training_data,
batch_size=FLAGS.batch_size), max_steps=FLAGS.steps)
eval_spec = tf.estimator.EvalSpec(input_fn=get_input_fn(
mode=tf.estimator.ModeKeys.EVAL,
tfrecord_pattern=FLAGS.eval_data,
batch_size=FLAGS.batch_size))
return estimator, train_spec, eval_spec
# def main(unused_args):
# estimator, train_spec, eval_spec = create_estimator_and_specs(
# run_config=tf.estimator.RunConfig(
# model_dir=FLAGS.model_dir,
# save_checkpoints_secs=300,
# save_summary_steps=100))
# tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
def create_tfrecord_for_prediction(batch_size, stoke_data, tfrecord_file):
def parse_line(stoke_data):
"""Parse provided stroke data and ink (as np array) and classname."""
inkarray = json.loads(stoke_data)
stroke_lengths = [len(stroke[0]) for stroke in inkarray]
total_points = sum(stroke_lengths)
np_ink = np.zeros((total_points, 3), dtype=np.float32)
current_t = 0
for stroke in inkarray:
if len(stroke[0]) != len(stroke[1]):
print("Inconsistent number of x and y coordinates.")
return None
for i in [0, 1]:
np_ink[current_t:(current_t + len(stroke[0])), i] = stroke[i]
current_t += len(stroke[0])
np_ink[current_t - 1, 2] = 1 # stroke_end
# Preprocessing.
# 1. Size normalization.
lower = np.min(np_ink[:, 0:2], axis=0)
upper = np.max(np_ink[:, 0:2], axis=0)
scale = upper - lower
scale[scale == 0] = 1
np_ink[:, 0:2] = (np_ink[:, 0:2] - lower) / scale
# 2. Compute deltas.
#np_ink = np_ink[1:, 0:2] - np_ink[0:-1, 0:2]
#np_ink = np_ink[1:, :]
np_ink[1:, 0:2] -= np_ink[0:-1, 0:2]
np_ink = np_ink[1:, :]
features = {}
features["ink"] = tf.train.Feature(float_list=tf.train.FloatList(value=np_ink.flatten()))
features["shape"] = tf.train.Feature(int64_list=tf.train.Int64List(value=np_ink.shape))
f = tf.train.Features(feature=features)
ex = tf.train.Example(features=f)
return ex
if stoke_data is None:
print("Error: Stroke data cannot be none")
return
example = parse_line(stoke_data)
#Remove the file if it already exists
if tf.gfile.Exists(tfrecord_file):
tf.gfile.Remove(tfrecord_file)
writer = tf.python_io.TFRecordWriter(tfrecord_file)
for i in range(batch_size):
writer.write(example.SerializeToString())
writer.flush()
writer.close()
print ('wrote',tfrecord_file)
def get_classes():
classes = []
with tf.gfile.GFile(FLAGS.classes_file, "r") as f:
classes = [x.rstrip() for x in f]
return classes
def main(unused_args):
print("%s: I Starting application" % (datetime.now()))
print("FLAGS",FLAGS)
estimator, train_spec, eval_spec = create_estimator_and_specs(
run_config=tf.estimator.RunConfig(
model_dir=FLAGS.model_dir,
save_checkpoints_secs=300,
save_summary_steps=100))
print("estimator",estimator,"train_spec",train_spec,"eval_spec",eval_spec)
tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
if FLAGS.predict_for_data != None:
print("%s: I Starting prediction" % (datetime.now()))
class_names = get_classes()
create_tfrecord_for_prediction(FLAGS.batch_size, FLAGS.predict_for_data, FLAGS.predict_temp_file)
predict_results = estimator.predict(input_fn=get_input_fn(
mode=tf.estimator.ModeKeys.PREDICT,
tfrecord_pattern=FLAGS.predict_temp_file,
batch_size=FLAGS.batch_size))
#predict_results = estimator.predict(input_fn=predict_input_fn)
for idx, prediction in enumerate(predict_results):
index = prediction["class_index"] # Get the predicted class (index)
probability = prediction["probabilities"][index]
class_name = class_names[index]
print("%s: Predicted Class is: %s with a probability of %f" % (datetime.now(), class_name, probability))
break #We care for only the first prediction, rest are all duplicates just to meet the batch size
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.register("type", "bool", lambda v: v.lower() == "true")
parser.add_argument(
"--training_data",
type=str,
default="",
help="Path to training data (tf.Example in TFRecord format)")
parser.add_argument(
"--eval_data",
type=str,
default="",
help="Path to evaluation data (tf.Example in TFRecord format)")
parser.add_argument(
"--classes_file",
type=str,
default="",
help="Path to a file with the classes - one class per line")
parser.add_argument(
"--num_layers",
type=int,
default=3,
help="Number of recurrent neural network layers.")
parser.add_argument(
"--num_nodes",
type=int,
default=128,
help="Number of node per recurrent network layer.")
parser.add_argument(
"--num_conv",
type=str,
default="[48, 64, 96]",
help="Number of conv layers along with number of filters per layer.")
parser.add_argument(
"--conv_len",
type=str,
default="[5, 5, 3]",
help="Length of the convolution filters.")
parser.add_argument(
"--cell_type",
type=str,
default="lstm",
help="Cell type used for rnn layers: cudnn_lstm, lstm or block_lstm.")
parser.add_argument(
"--batch_norm",
type="bool",
default="False",
help="Whether to enable batch normalization or not.")
parser.add_argument(
"--learning_rate",
type=float,
default=0.0001,
help="Learning rate used for training.")
parser.add_argument(
"--gradient_clipping_norm",
type=float,
default=9.0,
help="Gradient clipping norm used during training.")
parser.add_argument(
"--dropout",
type=float,
default=0.3,
help="Dropout used for convolutions and bidi lstm layers.")
parser.add_argument(
"--steps",
type=int,
default=100000,
help="Number of training steps.")
parser.add_argument(
"--batch_size",
type=int,
default=8,
help="Batch size to use for training/evaluation.")
parser.add_argument(
"--model_dir",
type=str,
default="",
help="Path for storing the model checkpoints.")
parser.add_argument(
"--self_test",
type=bool,
default="False",
help="Whether to enable batch normalization or not.")
parser.add_argument(
"--predict_for_data",
type=str,
default="[[[73,66,46,23,12,11,22,48,58,67,70,65],[11,6,2,10,23,33,48,56,54,41,22,10]],[[66,85,71],[9,3,26]],[[24,1,2,8],[6,1,10,19]],[[64,88,134,176,180,184,184,174,111,63,47],[34,29,28,35,39,58,91,94,86,71,62]],[[64,61,62],[74,83,102]],[[83,84,87],[78,102,107]],[[157,159,164],[96,108,116]],[[175,182],[91,115]],[[182,186,198,209,223,234,251,255],[51,36,29,30,38,39,20,8]],[[157,136,128,133,139],[35,47,57,35,29]],[[104,94,84,84,89],[40,52,70,30,26]],[[111,105,105,109,121],[30,59,68,72,34]],[[159,153,153],[41,54,65]]]",
help=".ndjson single line .drawing (e.g. just the strokes, no labels)")
parser.add_argument(
"--predict_temp_file",
type=str,
default="./predict_temp.tfrecord",
help="path to a temporary tfrecord that will be created from the .ndjson drawing data")
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
我已经像这样运行以上内容:
python classify.py --classes_file=rnn_tutorial_data/training.tfrecord.classes --model_dir=model_gpu_all/ --training_data=./rnn_tutorial_data/training.tfrecord-?????-of-????? --eval_data=./rnn_tutorial_data/eval.tfrecord-?????-of-????? --predict_for_data="[[[73,66,46,23,12,11,22,48,58,67,70,65],[11,6,2,10,23,33,48,56,54,41,22,10]],[[66,85,71],[9,3,26]],[[24,1,2,8],[6,1,10,19]],[[64,88,134,176,180,184,184,174,111,63,47],[34,29,28,35,39,58,91,94,86,71,62]],[[64,61,62],[74,83,102]],[[83,84,87],[78,102,107]],[[157,159,164],[96,108,116]],[[175,182],[91,115]],[[182,186,198,209,223,234,251,255],[51,36,29,30,38,39,20,8]],[[157,136,128,133,139],[35,47,57,35,29]],[[104,94,84,84,89],[40,52,70,30,26]],[[111,105,105,109,121],[30,59,68,72,34]],[[159,153,153],[41,54,65]]]" --predict_temp_file=./predict_temp.tfrecord --cell_type=cudnn_lstm
最后得到一个预测:
Predicted Class is: cow with a probability of 0.533384
不是一个很好的(教程警告数据集的大小和准确性),但这只是一种预测,是的!在此示例中,完全执行花费了31秒。
最佳答案
python train_model.py \--training_data=rnn_tutorial_data/training.tfrecord-?????-of-????? \--eval_data=rnn_tutorial_data/eval.tfrecord-?????-of-????? \--classes_file=rnn_tutorial_data/training.tfrecord.classes
使用以上命令的AFAIK也可以正常工作,它将简单地读取您一个一个下载数据文件的文件夹中的所有文件。create_tfrecord_for_prediction
当然不是我自己创建的,这段代码主要是从tensorflow的其他文件中摘录的create_dataset.py
下面,我粘贴了我添加的几乎所有新代码,包括对main()
函数的修改
def create_tfrecord_for_prediction(batch_size, stoke_data, tfrecord_file):
def parse_line(stoke_data):
"""Parse provided stroke data and ink (as np array) and classname."""
inkarray = json.loads(stoke_data)
stroke_lengths = [len(stroke[0]) for stroke in inkarray]
total_points = sum(stroke_lengths)
np_ink = np.zeros((total_points, 3), dtype=np.float32)
current_t = 0
for stroke in inkarray:
if len(stroke[0]) != len(stroke[1]):
print("Inconsistent number of x and y coordinates.")
return None
for i in [0, 1]:
np_ink[current_t:(current_t + len(stroke[0])), i] = stroke[i]
current_t += len(stroke[0])
np_ink[current_t - 1, 2] = 1 # stroke_end
# Preprocessing.
# 1. Size normalization.
lower = np.min(np_ink[:, 0:2], axis=0)
upper = np.max(np_ink[:, 0:2], axis=0)
scale = upper - lower
scale[scale == 0] = 1
np_ink[:, 0:2] = (np_ink[:, 0:2] - lower) / scale
# 2. Compute deltas.
#np_ink = np_ink[1:, 0:2] - np_ink[0:-1, 0:2]
#np_ink = np_ink[1:, :]
np_ink[1:, 0:2] -= np_ink[0:-1, 0:2]
np_ink = np_ink[1:, :]
features = {}
features["ink"] = tf.train.Feature(float_list=tf.train.FloatList(value=np_ink.flatten()))
features["shape"] = tf.train.Feature(int64_list=tf.train.Int64List(value=np_ink.shape))
f = tf.train.Features(feature=features)
ex = tf.train.Example(features=f)
return ex
if stoke_data is None:
print("Error: Stroke data cannot be none")
return
example = parse_line(stoke_data)
#Remove the file if it already exists
if tf.gfile.Exists(tfrecord_file):
tf.gfile.Remove(tfrecord_file)
writer = tf.python_io.TFRecordWriter(tfrecord_file)
for i in range(batch_size):
writer.write(example.SerializeToString())
writer.flush()
writer.close()
def get_classes():
classes = []
with tf.gfile.GFile(FLAGS.classes_file, "r") as f:
classes = [x.rstrip() for x in f]
return classes
def main(unused_args):
print("%s: I Starting application" % (datetime.now()))
estimator, train_spec, eval_spec = create_estimator_and_specs(
run_config=tf.estimator.RunConfig(
model_dir=FLAGS.model_dir,
save_checkpoints_secs=300,
save_summary_steps=100))
tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
if FLAGS.predict_for_data != None:
print("%s: I Starting prediction" % (datetime.now()))
class_names = get_classes()
create_tfrecord_for_prediction(FLAGS.batch_size, FLAGS.predict_for_data, FLAGS.predict_temp_file)
predict_results = estimator.predict(input_fn=get_input_fn(
mode=tf.estimator.ModeKeys.PREDICT,
tfrecord_pattern=FLAGS.predict_temp_file,
batch_size=FLAGS.batch_size))
#predict_results = estimator.predict(input_fn=predict_input_fn)
for idx, prediction in enumerate(predict_results):
index = prediction["class_index"] # Get the predicted class (index)
probability = prediction["probabilities"][index]
class_name = class_names[index]
print("%s: Predicted Class is: %s with a probability of %f" % (datetime.now(), class_name, probability))
break #We care for only the first prediction, rest are all duplicates just to meet the batch size
FLAGS.predict_for_data
这是保存笔触数据的命令行参数FLAGS.predict_temp_file
只是我用来创建临时输入数据tfrecord文件的文件名注意1:与此同时,我还修改了
get_input_fn()
中的一些代码,您可以在此PR中找到此代码更改:https://github.com/tensorflow/models/pull/3440(尚未合并)注意2:我还必须修改model_fn()并在注释
#Compute current predictions
之后添加以下几行 # Build the model.
inks, lengths, labels = _get_input_tensors(features, labels)
convolved, lengths = _add_conv_layers(inks, lengths)
final_state = _add_rnn_layers(convolved, lengths)
logits = _add_fc_layers(final_state)
# Compute current predictions.
predictions = tf.argmax(logits, axis=1)
if mode == tf.estimator.ModeKeys.PREDICT:
preds = {
"class_index": predictions,
#"class_index": predictions[:, tf.newaxis],
"probabilities": tf.nn.softmax(logits),
"logits": logits
}
#preds = {"logits": logits, "predictions": predictions}
return tf.estimator.EstimatorSpec(mode, predictions=preds)
# Add the loss.
cross_entropy = tf.reduce_mean(
tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels, logits=logits))
# Add the optimizer.
train_op = tf.contrib.layers.optimize_loss(
loss=cross_entropy,
global_step=tf.train.get_global_step(),
learning_rate=params.learning_rate,
optimizer="Adam",
# some gradient clipping stabilizes training in the beginning.
clip_gradients=params.gradient_clipping_norm,
summaries=["learning_rate", "loss", "gradients", "gradient_norm"])
return tf.estimator.EstimatorSpec(
mode=mode,
predictions={"logits": logits, "predictions": predictions},
loss=cross_entropy,
train_op=train_op,
eval_metric_ops={"accuracy": tf.metrics.accuracy(labels, predictions)})
然后剩下的唯一事情就是找出生成笔划数据。为此,您可以读取现有的tfrecord文件之一,然后从该读取操作中提取笔画,也可以编写一些JavaScript网页来生成笔画